The University of Tokyo Department of
Mechanical Engineering

Research

The Department of Mechanical Engineering covers a wide range of research areas, categorized into the following five fields. (A list of professors and their research areas is available here http://www2.mech.t.u-tokyo.ac.jp/eng/people/)

Solid State and Materials Engineering

We incoroporate fundamental education in strength designs based on material mechanics, fracture mechanics and reliability engineering a background indispensable for mechanical engineers – along with research into new frontiers such as surface science and materials simulation. Our research activities include micro- and nano-scale strength/friction test methods, and multi-scale simulations using techniques such as the finite element method and molecular dynamics. Through our research, we contribute to a broad range of industrial fields ranging from energy systems and the automobile industry to electronic devices, biotechnology and nanotechnology.

  • Jun YanagimotoProfessor

    Engineering Materials, Plasticity

    Website

    Our Chair of ‘Engineering Materials’ focuses on three fields: 1) Structural materials such as Carron-Fiber Reinforced Plastics (CFRP), Steels and Non-ferrous materials, 2) Elastoplasticity, and 3) Microstructure control by using the plastic deformation.

    Research Topics

    • Precise force and forward slip prediction model for cold rolling
    • High-speed hot compression test and decoding the materials genome.
    • Evolution of anisotropy by using multi-scale plasticity
    • Manufacturing and forming of CFRP core - metal sandwich structured sheet


    Current research topics and some results in our laboratory

  • Nobuhiro YoshikawaProfessor

    Multi-scale Solid Mechanics

    Website

    A methodology to develop carbon fiber reinforced plastic (CFRP) members has been investigated based on manufacturing and strength simulations in the framework of multi-scale modeling. A methodology to distinguish carbon fiber and resin seems promising for overcoming conventional trial-and-error design method of CFRP members.

    Research Topics

    • Developing jet engine members made by CFRP
    • Developing high pressure hydrogen CFRP tank for fuel cell vehicle
    • Investigating strength prediction simulator for CFRP members
    • Investigating manufacturing simulator for thermo-set and thermo-plastic CFRP


    Initial defects evaluation of jet engine members made by Carbin Finer Reinforced Thermo-Plastic

  • Satoshi IzumiProfessor

    Computational Materials Science, Multi-scale simulation

    Website

    We have been focusing on the research field of the strength and reliability evaluations of mechanical structures based on material mechanics. Present research covers multi-scale simulation for semiconductor material (combining finite element method, dislocation dynamics and molecular dynamics), finite element simulation for the design of mechanical structure including bolted joints. Those researches are applied to the fields of semiconductors, automobile, railroad vehicle through the collaborations with industries.

    Research Topics

    • Multi-scale simulations for various applications
    • Three-dimensional finite element analysis for the loosening of bolted joint.
    • Application of the molecular dynamics and finite element method to semiconductor devices


    Multi-scale simulation for the strength and reliability designs of mechanical structures

  • Yoshitaka UmenoProfessor

    Nanostructured Materials Strength and Science

    Website

    With the aim to reveal deformation and fracture mechanisms and peculiar physical properties originating in nanostructures in various materials including metals, semiconductors, ceramics and polymers, we perform multi-scale simulations ranging from nano-scale models such as ab initio and molecular dynamics to meso- and macro-scale models such as coarse-graining and finite element methods. We also develop new modeling methods utilizing data science.

    Research Topics

    • Analysis of buckling behavior and associated functionalities of carbon nanotubes
    • Multi-scale analysis of deformation and fracture in polymer materials
    • Reaction molecular dynamics of energy device materials
    • Development of multi-physics simulation methods using deep-learming


    Coarse-grained molecular dynamics simulation of tensile deformation of polycarbonate

  • Junho ChoiAssociate Professor

    Thin films and tribology

    Website

    We are studying the modification, control, and design of machine surfaces using solid thin films. Specifically, superlubricity of solid surfaces, durable triboelectric nanogenerator, superlyophobic surfaces, 3-dimensional diamond-like carbon coating, and synthesis of nanocarbon materials.

    Research Topics

    • Superlubricity of solid surfaces
    • Development of highly durable triboelectric nanogenerator
    • Three-dimensional coating of diamond-like carbon films


    Current research topics and some results in our laboratory

  • Asuka HatanoLecturer

    Biological simulation, Bio-mechanics

    Website

    The modeling and simulation of biological phenomena to elucidate the mechanisms, the link between micro-structures and physiological/ mechanical functions. The complex nature of biological systems, in which chemical, electrical, and mechanical phenomena interacting with each other, hamper our understanding of the mechanisms. To overcome the difficulty, we model and simulate biological systems integrating post-genomics massive information. The finite element method lay in the basis of our simulation.

    Research Topics

    • Multiphysics simulation of cardiomyocyte contractions
    • Fluid-structure interaction analysis of aortic valve openings
    • Contrast agent flow analysis in stenosed arteriole


    Propagating excitation and contraction simulated in cardiomyocyte microstructure

Fluid and Thermal Engineering

Our research projects analyze and explain various fluid phenomena ranging from the molecular scale to the global scale. High precision numerical analysis and cutting-edge test measurements are used to study heat and mass transfer phenomena, physical events occurring on environmentally low-load and high value-added energy systems, and to further improve energy conversion efficiencies. In addition, next generation micro- and nano-sized medical devices are currently being developed. Our ultimate goal is the creation of a richer human environment.

  • Chisachi KatoProfessor

    Fluid Flow and Thermal Systems Control

    Website

    Our laboratory leads the national project centered at “Fugaku” supercomputer in the industrial section, and is developing a flow solver capable of performing large-scale computations that uses trillions of computational grids. Through many joint projects with our academic as well as industrial partners, we do applied research aimed at replacing various industrial tests, and/or improving performance/reliability of an industrial product. We are also trying to understand complex phenomena that could never been clarified by conventional numerical simulations.

    Research Topics

    • Numerical prediction of unsteady turbulence and its engineering application
    • Numerical prediction of unsteady turbulence and its engineering application
    • Micro-energy conversion devices


    Fully Resolved Large Eddy Simulation as an Alternative to Towing Tank Resistance Tests

  • Shigeo MaruyamaProfessor

    Website

    Growth of single-walled carbon nanotubes and hetero-nanotubes by chemical vapor deposition (CVD) method. Characterization of those nano-materials with transmission electron microscopy and optical spectroscopy. Application of nano-materials in innovative solar cells and field effect transistors.

    Research Topics

    • Growth of hetero-nanotubes based on single-walled carbon nanotubes
    • Device application of hetero-nanotubes
    • Perovskite solar cells using carbon nanotubes and hetero-nanotubes


    Hetero-nanotube (left) and nano-carbon based flexible solar cell (right)

  • Shigeki KasaharaLecturer

    GMSI, WINGS-CFS

    Website

    Major concern is to plan and administer educational programs to develop basic technical expertise, literacy, and competencies of the engineering fields for graduate students through GMSI and WINGS-CFS activities. Final goal of these activities is to foster human resources, who obtain abilities not only to deepen their basic and special knowledge voluntarily, but also to create connections with many experts and stakeholders from academia industry and community, etc. of various countries and regions. Such human resources are expected much contribution to innovation and the collaborative creation of the future society.

    Research Topics

    • Engineering Education
    • Active Learning
    • International Cooperation and Industry-academia collaboration for Education


    Innovation for Future Society

  • Yuji SuzukiProfessor

    Website

    Our research interests includes development of high value-added micro energy devices for wearable devices and mobile robots, elucidation of combustion phenomena for clean energy systems, development of micro/nano thermo-fluids systems with the aid of MEMS technologies.

    Research Topics

    • Electret-based Vibration Energy Harvesting Device
    • Catalytic-combustion-based High-power-density Power Source for Autonomous Mobile Robot
    • Investigation of Low-temperature-oxidation of Fuel and Its Wall Chemical Effect Using Advanced Laser Diagnostics
    • High-performance Heat Exchanger for Small-scale Geothermal Power Plant
    • Optimal Control/Design of Micro/Nano-scale Heat and Fluid Flows


    MEMS-based Electret Vibration Energy Harvster

  • Shikazono NaokiProfessor

    Thermal Energy Engineering

    Website

    Next-generation energy conversion devices, i.e. solid oxide fuel cells (SOFCs) operating at a high temperature of about 800 ℃, heat engines and heat pumps which operate with low temperature difference are studied.

    Research Topics

    • High efficiency energy systems combining SOFC, heat engine and high temperature heat storage
    • SOFC electrode analysis using numerical simulation and advanced microscopic technologies
    • Large-scale simulation and development of thermal elemental technologies


    Three dimensional distributions of ionic (blue) and electronic (red) currents in SOFC anode.

  • Shu TakagiProfessor

    Website

    We have been working on various types of studies related to Fluid Mechanics, such as blood flows with many Red Blood Cells, bubbly flows in a water-purified tank, air-lift pump for deep ocean mining etc. We investigate the detail multiscale mechanism of related phenomena from both fundamental and application points of view.

    Research Topics

    • Bio-Medical Application of Microbubbles
    • Air-Lift Pump for Deep Ocean Mining
    • Bio-Mechanical Simulation using Super-Computer


    Multiscale phenomena in Fluid Mechanics Ex. Bubbly Flow Turbulence

  • Ryo ShirakashiProfessor

    Phase Change Thermal Engineering

    Website

    Our laboratory is dedicated to the study of molecular - cellular scale kinetics and thermophysical properties that dominate the various functions of materials. Especially, the near infrared and the dielectric spectroscopies of the water-rich materials including living cells, biomaterials and hydrophilic porous materials (e.g. lignite) are used to open the new aspects in the fields of biomedical, foods and energy engineering. The recent topics in the laboratory are listed below.

    Research Topics

    • Stabilization of clinical analytes and diagnostic agents for their high quality dry-preservation
    • Dielectric spectroscopy of the retained water in Lignite for estimating its low temperature oxidization.
    • Delivery of cryo-/dry-protective agents into a living fish egg by the enhancement of membrane transport
    • Development of the thin heat transport device equipped with the highly integrated micro grooved channels
    • Dielectric spectroscopy of the slurry for electrodes (catalytic layer) for estimating its kneading state.


    Top left: Electro pierced fish egg. Top right: Visualized liquid in micro grooves. Bottom: Dielectric relaxation distribution of solution.

  • Hirofumi DaigujiProfessor

    Website

    We work on energy technologies and related phenomena in pursuit of higher efficiency and performance in various temperature control mechanical devices. These include phase change, chemical reactions and heat and mass transfer in different thermal engineering systems.

    Research Topics

    • Next generation HVAC technology
    • Adsorption and transport of water in nanospace materials
    • Analysis and control of bubble generation in nanopores
    • Nanofluidics and electrokinetics


    Next generation HVAC technology and cooling technology

  • Junichiro ShiomiProfessor

    Website

    Most of the energy obtained from natural resources is not used and is exhausted as heat. To realize a sustainable society, development of technology to convert this exhaust heat to other energy forms (such as electricity) or to store and reuse it is important. Our group aims to make effective use of thermal energy by understanding, designing and manufacturing materials and devices from a multi-scale perspective from molecules to continuums, by combining theoretical calculation, material synthesis, physical-property measurements, and machine learning.

    Research Topics

    • Development of thermoelectric conversion technology based on nanotechnology
    • Heat-transfer innovation by Materials Informatics (material science x information science)
    • Control of interfacial fluid dynamics phenomena such as wetting and phase change and its application to heat exchange


    Manipulate heat at the nanoscale, and innovate heat dissipation, heat insulation, and thermoelectric conversion technologies to effectively use thermal energy.

  • Yosuke HasegawaAssociate Professor

    Thermal Fluids Engineering

    Website

    We are working on various optimization problems in thermo-fluids engineering by combining optimal control theory, machine learning and massive parallel simulation techniques of fluid flow. The developed techniques are used for optimal designs of various thermo-fluids devices, monitoring turbulent environments by limited remote measurements etc.

    Research Topics

    • Optimal control of turbulent transport phenomena
    • Shape optimization of thermo-fluids systems
    • Mathematical modeling of vascular network remodeling
    • Estimation of turbulent environments based on limited noisy sensing data


    Left: Topology optimization of a turbulent heat transfer surface Right: Estimation of ocean environment based on measurement by UAV

  • Shohei ChiashiAssociate Professor

    Molecular thermal engineering

    Website

    Synthesis, characterization, and applications of nano-materials, such as carbon nanotubes, and graphene, etc., that possess unique and different properties from bulk materials, are studied. At the nano-scale, the fabrication of complex systems, the physical/chemical phenomena and the material/energy transport are interesting research topics. The development of nanotechnology and its applications are aimed, through the nano-material researches.

    Research Topics

    • Synthesis of nano-materials, such as carbon nanotubes, graphene, etc.
    • Spectroscopic and conduction properties of nano-materials
    • Material and energy transport properties at the nanoscale and their applications


    Synthesis of carbon nanotube and atomic layered material, and spectroscopy

  • Takashi Kodama

    Website

    Research Topics


  • Ikuya KinefuchiAssociate Professor

    Website

    Research Topics


  • Muhammad AzizAssociate Professor

    Energy and process integration engineering

    Website

    Clean and highly energy-efficient systems are proposed and modeled toward the realization of sustainable community. These cover the analysis of each elemental technology, and optimization of each process and integrated system.

    Research Topics

    • Highly efficient hydrogen production, storage, and utilization
    • Chemical looping-based CO2-free energy conversion
    • Energy-efficient waste-to-energy conversion
    • Advanced utilization of electric vehicle for grid ancillary services
    • Decomposition of environmental gases


    Integrated primary and secondary energy sources, and developed chemical looping system

  • Rong XiangAssociate Professor

    Molecular and Thermal Engineering

    Website

    When the dimension of a material decreases to nanoscale, new properties start to appear. As representative nanoscale materials, fullerene, carbon nanotube, graphene, and more recently 2D heterostructures have attracted world-wide attention in the past decades. We focus on controlled synthesis of novel nanomaterials, as well as the characterization of these nanomaterials using state-to-the-art electron microscopes.

    Research Topics

    • Synthesis and energy application of carbon nanotube
    • Transmission electron microscopy of nanomaterials
    • Creation and characterization of 1D heterostructures


    Recent research topic and progress

  • Kenichi UchidaAssociate Professor

    Website

    Development of novel science and technology of “Spin caloritronics”, an interdisciplinary field between spintronics physics and thermal energy engineering. Spin caloritronics enables unconventional thermoelectric generation and thermal energy control, which are investigated by cutting-edge heat and spin detection techniques.

    Research Topics

    • Thermal management principles and technologies base on magnetic and spintronic materials
    • Fundamental physics and thermoelectric application of spin-heat-charge current conversion
    • Novel measurement techniques for thermal transport and thermoelectric phenomena
    • Thermal devices based on magneto-, electro-, and elastocaloric effects


    Thermal imaging of spin transport phenomena

  • Kenichi MorimotoLecturer

    hermo-fluids engineerin

    Website

    Our research aims at developing high-performance thermo-fluids systems/devices for a wide range of practical engineering applications, founded on thermal and fluids engineering, MEMS technology, computational fluid dynamics, and optimization theory. Currently, the research interests focus on the modeling and optimization of high-performance turbulent/laminar heat exchangers that would play a key role in saving energy in modern society, and low-power gas sensors for future wireless sensor network system.

    Research Topics

    • High-performance compact heat exchangers
    • Modeling and optimization of turbulent heat transfer with complex geometry
    • Development of ultra-low power MEMS gas sensor
    • Shape optimization in conjugate heat transfer problems


    MEMS gas sensor with deep electrodes and high-sensitivity parylene E

  • Wei-Lun HsuLecturer

    Thermal Engineering

    Website

    In comparison with their bulk values, molecules possess unique transport properties in confined nanospace, allowing for the possibility of future technologies and applications. In this regard, we study transport phenomena of water, ions and biomolecules at the nanoscale driven by different types of chemical potential to explore unidentified physical phenomena via both theoretical and experimental approaches. Built upon acquired knowledge from our fundamental research, we propose prototypes of next generation systems for energy-related and medical purposes. Currently, we are working on the developments of desiccant-based dehumidifiers for air-conditioning applications and solid-state nanopore DNA sequencing devices using two-dimensional materials for precision medicine technology.

    Research Topics

    • Transport phenomena at the micro/nanoscale
    • Development of two-dimensional nanopore DNA sequencing devices
    • Design of next generation dehumidifiers using desiccant materials


    Transport phenomena of water, ions and biomolecules at the micro/nanoscale.

  • Takuma ShigaLecturer

    Molecular and Thermal Engineering

    Website

    It is demanded to realize extremely high or low thermal conductivity and high thermoelectric conversion for advanced thermal management. Although heat is easily dissipated and hard to be manipulated, structural controls in the micro-nano scale have enabled us to realize such the controls. In order to further enhance the controllability of heat, we have been trying to realize these novel thermal properties by using the channels of interactions of phonon with other carriers such as electron, photon, and spin.

    Research Topics

    • Thermal phononics
    • Multi-carrier transport analysis
    • Development of spectral heat transfer theory for novel thermal management


    Spectral thermal conductivity control for advanced thermal management

  • Yuki AsanoLecturer

    Robotics, Humanoid, Mechanical design, Biomimetics

    Website

    Robotics research and development through the design and development of robot hardware is the main research topic. Based on the structural module assembly design that is the basis of the robot system, we have studied the body design and motion generation of human mimetic humanoids that have high bio-fidelity to the human musculoskeletal structure, or wearable robots. We will explore robot applications in the real world and aim for the social implementation of robot technology.

    Research Topics

    • Study of musculoskeletal design and motion generation of human mimetic humanoids
    • Research and development of robot module/device
    • Social implementation/application of robot technology in the real world


    Robot platforms and applications based on robotic hardware elements

  • Mouterde TimothéeLecturer

    Fluid-solid interactions at the smallest scales

    Website

    Our research interests are mainly in experimental physics of fluids at interfaces. We explore how tuning surface properties allow us to control fluid behavior. We investigate how micro and nanotextures combined with chemistry modify droplets behavior from the millimetric to the nanometric scale (water repellency, antifogging, antifrosting, …). Down to the atomic scale, we study experimentally the new properties of fluids and ions confined in channels with molecular dimensions. Through our research, we aim to develop new technologies that will benefit the society and contribute to tackle the major challenges we face such as global warming, freshwater production or energy decarbonization.

    Research Topics

    • Nanostructured metamaterials for fluid repellency
    • Fluids and ions control at the molecular scale
    • Nanofluidics


    Nanostructured metamaterials for antifogging

Mechanical Dynamics and Control Engineering

Through our activities in these fields we aim to develop the modeling and sensing technologies required to understand the physical phenomena occurring in various objects. This is achieved through the integration integration of hardware and software, such as the creation of control the algorithms needed to ensure devices systems that enhance or systems perform as designed, and the development of devices and systems performance, accuracy, efficiency, intelligence, and reduce component covers a wide range of size. Our research applications including automobiles, railway equipment, equipment, robots, energy systems, and living bodies.

  • Yoshihiro SudaProfessor

    Website

    Our laboratory focus on to the mobility. The research projects are based on Control Engineering, Multibody dynamics, Human factor. We apply both traditional knowledge and current progressive methods like AI for mobilities. The goal for us are to realize and implementation the sustainable mobility .

    Research Topics

    • Boundary field of Human, Vehicle and Infrastructure
    • Automated Driving , Driver behaviors and Human Factors
    • Rail system and Novel type transportation systems
    • Application AI and Bio-signal measurements for mobility
    • Acceptance of Mobility


    Research fields in the laboratory for sustainable mobility

  • Fumito AraiProfessor

    Website

    Biorobotics. System integration using MEMS and nanotechnology is the base of our research. Under the design thought of bionic approach, we create the innovative systems and machines to know the mechanism of the living body, to imitate the function of the living things, and to expand the ability of the living things. Applications are, medical care, regenerative medicine, an intelligent robot, an advanced measurement system, etc.

    Research Topics

    • Bio-inspired robotics: Systems inspired by living things
    • Micro-nano robotics: System integration using micro-nano fabrication and MEMS devices
    • Bio-medical applications: Sensors & actuators for emerging functions and intelligence


    Integration of Bionic Mechanical Systems

  • Nakano KimihikoProfessor

    Mechanical and Biological Systems Control

    Website

    While attention on automated driving of automobiles increases, aiming for augmentation of a driver, human oriented mobility engineering researches such as shared control, human-machine interface, and high level sensing have been conducted.

    Research Topics

    • Modelling of Drivers and Performance Evaluation of Shared Control
    • Evaluation of Interface for Advanced Driver-Assistance Systems
    • Energy Harvesting Using a Nonlinear Vibration System in a Tire
    • Condition Monitoring of a Railway Vehicle


    Outline of research activities

  • Yudai YamasakiAssociate Professor

    Power and Energy System

    Website

    Yamasaki Laboratory is conducting researches on combustion technology, control, and optimization for automotive powertrains and distributed energy systems. We are also working on applying AI technology for clarifying and modeling the complex physical phenomena of high-speed and high-temperature unsteady fields such as combustion in engines, and the system development with various mechanical elements and devices. In addition to such cooperation between hardware and software, we aim to build a system considering individual characteristics of humans such as drivers.

    Research Topics

    • Advanced engine control system, advanced combustion technology and alternative fuels
    • AI application for virtual sensors and combustion analysis
    • Analysis of biological signals during driving and powertrain control considering individual difference
    • BCP and optimization of distributed energy system


    Advanced engine control system utilizing connected data

  • Yuji YamakawaAssociate Professor

    High-speed Flexible Robotics

    Website

    By connecting various sensors on the network, centered on high-speed vision, we construct sensor network systems to quickly and comprehensively recognize the real world. Then we also feed back to actuation systems (robots etc.) in real time. Using these technologies, we aim to develop high-speed intelligent systems that realize dynamic interaction with the real world.

    Research Topics

    • Development of high-speed robot system
    • Study on human-robot collaboration
    • Study on dynamic manipulation
    • Study on vision sensor network
    • Study on intelligent production system


    Janken (rock-paper-scissors) robot with 100% winning rate

Design and Production Engineering

This discipline seeks to produce products that take into consideration the comprehensive perspective of technology, humanity, and society. The application of mechanical engineering studies can be found in a wide range of areas including automobiles, information equipment and even living cells and DNA. The size of these products can range from the human scale down to micro- and nano-scale devices, and can be made of everything from conventional construction materials to living organisms. As the capability of mechanical systems continues to advance, factors such as ethics and emotions become increasingly important. Our research and design efforts are dedicated to the creation of production and processing technologies that will keep pace with these complex challenges.

  • Mamoru MitsuishiProfessor

    Website

    Research Topics


  • Shunji YamanakaProfessor

    Design Engineering

    Website

    The practice of "design" that integrates the manners of the natural sciences with the methods of art, and prototyping for envisioning the future. Yamanaka Laboratory develops prototypes that explore new technological horizons through collaborative work between researchers and companies. Conducting practical research into the relationship between human and artifacts in the future throughout introducing design into the areas where design has not yet been deployed: cutting-edge technology fields such as robotics and spacecraft engineering where design method is yet to be firmly established; creation with cutting-edge manufacturing methods; and where the relationship between human body and artifacts are increasingly invaluable such as a medical field.

    Research Topics

    • Prototyping as an outreach activity to the society to communicate the dream of cutting-edge research
    • Exploring new design methods based on additive manufacturing (3D printing)
    • Extraction of "bio-likeness”, the cognitive factor of lifelikeness, and exploring robotics based on it
    • Speculative design for einvisioning the future after the rare metal revolution
    • Developing Beautiful Prosthetic Leg for Paralympic Athletes


    Prototypes designed by Yamanaka Laboratory
    Left : Ready to Fly, Center : Ready to Crawl, Right : Rami (Running-Specific Proscetic Leg)

  • Hiroshi UsukiProfessor

    Website

    Research Topics


  • Masayuki NakaoProfessor

    Creative Design Engineering

    Website

    Nakao, Nagato, Ueda, and Ito lab research on design and manufacturing. Design method using neuroscience, automatic operation system, manufacturing technology for surface functions are carried out. Wide range of researches with not only fundamental topics but also application topics are studied with companies such as automobiles, construction machines, agricultural machines, and materials.

    Research Topics

    • Axiomatic design, Creative design, Failureology
    • Manufacturing process on automobile components
    • Nano and micro fabrication


    Research field from foundation to application on design and manufacturing

  • Tamotsu MurakamiProfessor

    Design Engineering

    Website

    At Design Engineering Laboratory, researches are conducted on design theories, methodologies and information technologies for enabling designers and engineers to maximally utilize their knowledge and creativity to design excellent products and services (design by human) to provide people and society with new values to satisfy their needs, affectivity and diversity (design for human).

    Research Topics

    • Design ideation by collaboration of human designer and information technology
    • Game design methodology to avoid negative UX without spoiling positive UX
    • Usability design technology applicable through upstream to downstream of design process


    Ideation from potential similarity of functions and user experiences among products in different categories

  • Naohiko SugitaProfessor

    Cutting/Grinding, Machine tools

    Website

    Our laboratory conducts researches of process such as cutting and grinding, machine tool, laser processing and medical application. Our technology enables to observe the high-speed phenomenon and to establish the physical models. Novel idea is proposed to solve the current problems.

    Research Topics

    • Cutting/grinding technology to realize high precision and efficiency for gear
    • Machining center with CFRP(carbon fiber reinforced plastic)
    • Micro machining of glass with ultra short pulse laser
    • Artificial knee joint designed for each patient


    Advanced manufacturing and machine tools

  • Jean-Jacques DelaunayAssociate Professor

    Measurement and sensing systems, Optics, Nanotechnology

    Website

    Our group specializes in the fabricaton of micro/nanostructures and their use in energy conversion devices and optical devices with sub-wavelength dimensions. By advancing micro/nanofabrication techniques, we are able to design and fabricate micro/nanostructures that interact strongly with their external environment. For example, efficient sorption of airborne water molecules on mesoporous materials can be used for cooling purposes, and enhanced light-matter interactions in metallic structures can be exploited to realize highly sensitive sensors for biological/medical applications or ultra-fast all-optical switches for telecommunications.  

    Research Topics

    • All-optical force sensor using transparent elastic structures
    • Surface-wave devices for bio-detection and all-optical switching
    • Control of thermal emission using micro/nano structuration


    Images of micro/nano structures and their associated devices

  • Kensuke TsuchiyaAssociate Professor

    Mechanical process, assembly, production system

    Website

    Our laboratory develops machining technology that creates a shape, and assembling/ implementation/inspection of the components technology for from micro-scale to macro-scale devices.

    Research Topics

    • Mechanism of machining phenomena
    • Mechanical process with high efficiency
    • Smart production systems


    Micro manipulation system under microscope observation

  • Hideyoshi YanagisawaAssociate Professor

    Affective design engineering

    Website

    Affective design (or Kansei design in Japanese) is an expansion of conventional engineering design that considers requirements depending on human perception and emotions as well as product function and performance. Affective design engineering is an emerging discipline that studies theories and methodologies for engineering designers to create delightful artifacts in a systematic way. Our laboratory aims to understand the essential mechanism of perception and emotions and to formulate their first principles. We apply theories and methodologies to several industrial applications in cooperation with various disciplines.

    Research Topics

    • Modeling perception and emotion based on neuro-information-theoretic approach
    • Sense of agency and interface design
    • Safety and reliable design of autonomous machines for human
    • Multi-sensory design based on the first principle modeling
    • Multilingual semantic words management in design process


    Affective design as an expansion of engineering design and its academic foundation

  • Masamichi ShimosakaAssociate Professor

    Design and Production Engineering

    Website

    We develop techniques for modeling human behaviors obtained by ubiquitous technologies. Specifically, we are working on the development of statistical machine learning including Bayesian analysis, and deep learning, and data analysis for IoT, and mobile phone sensor data. Based on these technologies, we are also pursuing the innovation in various service technologies where these behavioral modeling technologies are helpful.

    Research Topics

    • Human behavior modeling with Inverse optimal control
    • People flow modeling from massive GPS data
    • Machine learning for IoT / mobile phone sensing


    Human behavior modeling with Inverse optimal control, and people flow modeling from massive GPS data

  • Tsuyoshi FurushimaAssociate Professor

    Materials Forming and Processing

    Website

    Our lab. are conducting research on deformation process on the theme of "material deformation" related to metal forming and plasticity engineering, which is the basic technology of "manufacturing" in Japan. We cover both experimental and theoretical approaches such as stamping process, tube forming, material modeling, dieless forming without using any dies and tools, micro metal forming by focusing on “permanent deformation of materials” from a standpoint of cross-cutting issues from micro to macro-scale.

    Research Topics

    • Micro stamping process for medical and electromechanical compomemts
    • Meso-scale material modeling considering crystal structure and surface roughenss
    • Fabrication of bio and medical microtubes by dieless forming process
    • Non-contact measurement techniques of plastic deformation
    • Development of Intelligent metal forming process


    Micro metal forming and its simulation

  • Keisuke NagatoAssociate Professor

    Production Process Engineering

    Website

    Micro-/Nanostructured surfaces express a variety of physical functions interacting with light, thermal fluid, force, electron, chemicals, and biological materials. We develop high-efficiency manufacturing methods using laser or powders for these functional surfaces but also their novel applications. We also study data-driven “Process Informatics”, to efficiently open the process windows of the laser/powder processes having complex physical phenomena.

    Research Topics

    • Microfabrication of functional surface
    • High-speed and microscale mechanism on powder bed fusion
    • Powder Process Informatics


    Large-area nanomanufacturing and functional surfaces

  • Takayuki YamadaAssociate Professor

    Mathematical Informatics and Design Engineering

    Website

    We study optimal design methods and their practical applications in mechanical engineering. Additionally, we construct a novel theory for design engineering based on mathematics and informatics beyond the traditional framework. To achieve our aim, we study mathematical physics in mechanical engineering, mathematical modeling for design problems, modeling for geometrical conditions by the partial differential equations, multiscale design problems, and practical design problems.

    Research Topics

    • Mathematical models for geometric constraints in manufacturing and optimization of design and manufacturing systems
    • The fictitious physical models for design and manufacturing and the topology optimization
    • Mathematical models for creations of novel functions and mechanisms ant the topology optimization
    • Multiscale analysis based on the homogenization method, and the optimal design of metamaterials


    Schematic of the research field and design examples by topology optimization

  • Kazutaka UedaLecturer

    Cognitive Neuroscience, Kansei Engineering, Creative Design Science, Brain Machine Interface

    Website

    We are conducting interdisciplinary research that integrates cognitive neuroscience, engineering, and medical sciences with a focus on the human elements of design, including sensibility of users and creativity of designers. We seek to understand precise information processes in human sensation, cognition, emotion, and thinking using neuroscientific measurement techniques (e.g., EEG and fMRI), and to build new theories and techniques that contribute to designing. We are also engaged in the development of brain-machine interfaces for the support of creativity and the improvement of cognitive functions.

    Research Topics

    • Elucidation of neural mechanisms of aesthetic sensibility to products using functional neuroimaging techniques
    • Elucidation of neural mechanisms of creativity and development of creativity-assisting techniques
    • Development of brain-machine interfaces for enhancing cognitive functions


    Brain process occurring during aesthetic evaluation of the exterior design of an automobile.

  • Takuma ItoLecturer

    Website

    To realize safe, secure, and comfortable mobility society, we are researching intelligent mobility. Specifically, we are developing the driving environmental recognition systems and motion control systems of intelligent automobiles and personal mobility. In addition, we are evaluating the user acceptance of the human-machine shared systems based on such elemental technologies.

    Research Topics

    • User acceptance of intelligent mobility
    • Human-machine shared system
    • Driving environmental recognition technologies and digital maps for community roads


    Experimental vehicles of intelligent mobility

  • Zhao MojuLecturer

    Intelligent Robotics

    Website

    Autonomous surveillance and inspection system in both indoor and outdoor environments by aerial and ground robots. For such a system, robots are required to have both mobility and the manipulation ability. Thus the research topics about intelligent robotics, such as realtime control, multimodel sensing, and system integration, are focused in our work.

    Research Topics

    • Dexterous Aerial Manipulation by Transformable Aerial Robot
    • Autonomous Surveillance by Multimodel Sensing
    • Cooperative Air-Ground Robotic System for Surveillance and Inspection


    Development of intelligent application achieved by different robot platforms

Bioengineering

The fusion of biology and mechanical engineering helps us understand micro- and nano-scaled physical and biological phenomena, which leads to the ability to create innovative machinery and develop new levels of biological interaction. Research combining medical science and engineering has resulted in new types of biological measurement and diagnostic technology. Other research includes the study of regenerative medicine that may eventually allow the reconstruction of damaged tissues through the control of individual cells and other techniques.

  • Marie OshimaProfessor

    Website

    In order to elucidate the mechanism of cardiovascular diseases such as cerebral aneurysm and arteriosclerosis, we are conducting research from both sides of numerical simulation and experiment. In the simulation, we are developing an integrated system for surgical planning of endovascular treatment combining simulation techniques with medical image data. In the experiment, we have developed a confocal micro PIV (particle image velocimetry) system and the latest three-dimensional measurement method to perform quantitative measurement of the multiphase flow in a microchip such as a blood diagnostic chip.

    Research Topics

    • Development of integrated circulatory simulation system considering systemic circulation based on medical images
    • Development of 3D blood vessel shape modeling and visualization method from medical images for predictive medicine
    • Development of coupled analysis method for endovascular treatment
    • Visualization measurement of microscale flow with confocal Micro-PIV and digital holographic microscopy


    Preoperative and postoperative prediction and visualization system of cerebrovascular network blood flow distribution using multi-scale systemic circulation simulation

  • Fumitoshi SatoProfessor

    Computational Bimolecular Science

    Website

    Proteins are intricate molecules working efficiently with a minimal amount of energy. The remarkable functions of proteins are inseparable from their large-scale and complex structures. The straightforward approach for explaining and predicting the essence of the protein functions is the analysis of the reaction mechanisms using quantum chemistry based on the entire molecular structure. Our group is investigating and developing ProteinDF/QCLO, the canonical molecular orbitals calculation program for proteins based on the hybrid density functional theory (DFT). We aim at designing new enzymes, nanomaterials, and medicines.

    Research Topics

    • Canonical molecular orbitals calculation of protein based on the hybrid DFT
    • Analysis of the reaction mechanisms of protein
    • Design of enzymes, nanomaterials, and medicines


    Molecular orbitals of cytochrome c3

  • Katsuko FurukawaAssociate Professor

    Molecular and Thermal Engineering

    Website

    We are trying to establish regenerative medical engineering for regenerating living tissues in vitro, synthesizing mechanical engineering, material science and cellular/ molecular biology. Additionally, we are also trying to elucidate unknown mechanisms regarding how living cells sense physical stimulations such as tensile stress, shear stress, and hydrostatic pressure at molecular levels.

    Research Topics

    • 3D Fabrication Technology
    • Tissue Engineering for Uterus, Cartilage and Bone
    • Bioreactor Design for Mechanical Stresses
    • Real-time Imaging Technologies for Mechanical Stresses


    Mechanobioengineering research (Tissue Engineering with 3D structure by mechanical stress loading with bioreactors)

  • Hidehiro OanaAssociate Professor

    Bionanotechnology

    Website

    We are conducting research on microfabrication and micromanipulation technology for micro soft materials based on micro-/nano-engineering. We are exploring applications for single-cell/single-molecule analysis, stimulation and response measurement of individual cells/biopolymers, and control/modification of cell functions. These make it possible to obtain knowledge that could not be obtained by conventional research methods, and is expected to contribute to the basic life sciences and medical fields.

    Research Topics

    • Development of individual chromosome/DNA manipulation technology and its application to epigenome analysis
    • Development of on-chip cell fusion devices and its application to regenerative medicine
    • Development of microfluidic devices for giant vesicle formation and its application


    Microfluidic device for single cell/single chromosome analysis

  • Kanako HaradaAssociate Professor

    Medical engineering

    Website

    We have been developing surgical robots for microsurgery, in particular, for pediatric, eye and neurosurgery using bioengineering technologies. We are also trying to automate the surgical robots considering surgical skills quantitatively assessed using high-fidelity patient/organ models equipped with sensors (named Bionic Humanoids) and virtual-reality simulators. Medicine-engineering collaboration is essential in this research domain, and basic knowledge of regulatory science is necessary.

    Research Topics

    • Surgical robots for pediatric, eye and neurosurgery
    • Automation of surgical robots
    • Surgical skill assessment


    Surgical robot and head model