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Instructions
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7.

8.
9.

Do not open the exam booklet until you are instructed to begin.

Answer all Questions in Problems 1 and 2.

If you find some incomplete printing or collating, report them to the proctor.

Make sure that you have all 4 answer sheets. Let the proctor know otherwise.

Use 2 answer sheets for each Problem. If there are Questions I and [Iin a Problem,
use one answer sheet for one Question. If there are Questions I ,II and I in a
Problem, follow the instruction at the top of the Problem. If the space on the front
side of the answer sheet is not enough, you may also use the backside. If the space
1s still not enough, ask the proctor for an additional answer sheet. '

On each answer sheet, write your examinee number (candidate number) and the
Problem number in the designated boxes. If you fail to do so, the answer sheet may
not be graded. Write “Mechanical Engineering (Part 1)” in “Subject”. Leave “(
of )” blank unless you use an additional answer sheet for the Problem.

Answer sheets with symbols or signs that are not related to the answers may be
judged invalid.

Hand in all the answer sheets even if you have not used them.

You are provided with 2 worksheets. Write your examinee number (candidate
number) on the upper left corner of each worksheet.

10. Hand in both worksheets even if you have not used them.
11. You may take home the exam booklet.
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Problem 1

Answer both of the following Questions I and II. Use one answer sheet for
Question I and use another answer sheet for Question II.

[. Consider a system in which an ideal gas is flowing in a steady state, as
shown in Figure 1-1. At the inlet, the ideal gas has the pressure p; and
the temperature T;. After exchanging heat and work with the ambient, the

ideal gas at the outlet has the ambient pressure p, and the ambient
temperature Ty. Assume that the quantities defined by 7, = p;/p, and

rr =T,/T, satisfy 1, > 1 and r; = 1, respectively. The specific heats of
the ideal gas at constant pressure and constant volume are ¢p and c,,
respectively. The specific heats are constant, and the relation ¢, — ¢, = R

holds, where R is the gas constant. The specific heat ratio is denoted as
K = cp/cy. Answer the following questions.

Ambient: pg, Ty

P1s T1 Work

Heat

Po- TO

Figure 1-1

(1) Express the enthalpy difference per unit mass of the ideal gas
between the outlet and inlet using k, R, Ty, and 17y.

(2) Express the entropy difference per unit mass of the ideal gas
between the outlet and inlet using k, R, 7, and 7.

(3) Express the maximum work that can be taken out of the ideal gas

to the ambient per unit mass of the ideal gas between the outlet and
inlet using k, R, Ty, 7, and 1.
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Next, as shown in Figure 1-2, the same ideal gas as in the previous
questions is enclosed in a closed system at the pressure p; and the
temperature T;. After exchanging heat and work with the ambient, the
ideal gas in the closed system is in equilibrium with the ambient pressure

Po and the ambient temperature T,. Answer the following question.

(4) Express the maximum work that can be taken out of the ideal gas

to the ambient per unit mass of the ideal gas from the initial state to
the equilibrium state using k, R, T,. 1,, and 7. Note that the work

done against the ambient pressure p, is not included in the
calculation of the maximum work. Also, explain the difference

between the maximum works obtained in Questions (3) and (4).

Heat Ambient: pg, Ty

Initial state

Work

\ 4

Ambient: py, T,

Equilibrium state

Figure 1-2
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II.  Consider the heat conduction (0 < x < x;) in the thickness direction (x
direction) of a flat plate (infinite flat plate) with constant thickness x,
and sufficiently large area. Figure 1-3 shows the temperature distribution
of the flat plate. The surface of the flat plate at x = 0 is thermally
insulated. Let the temperature distribution of the flat plate at time t (= 0)
be T(t,x). The surface temperature of the flat plate at x = x, is kept at
Ty + 8T (8T > 0) and 8T is sufficiently small. The material of the flat
plate undergoes a phase change, and it is in solid phase A for T < T, and
in solid phase B for T > T,. The latent heat per unit mass of the phase
change from the solid phase A to Bis [ (/> 0). The density p and the
thermal conductivity A of the flat plate are constant and do not vary due
to the phase change. The position of the phase boundary is x = s(t). The
flat plate is in the solid phase A in the range 0 < x < s(t) and in the solid
phase B in the range s(t) < x < x;, and the temperature distribution is

expressed by

T, (0<x<s(D)

T(t,x) = x —s(t)

T°+6Tx0—s(t) (s(t) <=x<xp) .

At t =0, the entire plate is in the solid phase A (s(0) = x;), except for the

surface at x = x,. Answer the following questions.

(1) By using the given temperature distribution, obtain the heat fluxes
ga(t) in the solid phase A (0 < x < s(t)) and gg(t) in the solid
phase B (s(t) < x < x;), respectively. Define heat fluxes in the
positive direction of the x-axis as positive.

(2) Give the equation that represents the heat balance at x = s(t).

(3) Obtain s(t).

(4) Obtain the time at which the entire plate becomes the solid phase
B, except for the surface at x = 0.
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Problem 2

Answer both of the following Questions I and II. Use one answer sheet for

Question I and use another answer sheet for Question II.

[.  Consider a one-dimensional flow, as shown in Figure 2-1, which models
the propagation of sound in a stationary gas with the density p, and the
pressure po. The plane, where the state of the gas changes discontinuously,
is propagating in the positive x direction at a constant velocity ¢,. When
the plane of discontinuity arrives, the density and pressure increase by
infinitesimally small amounts dp and dp, respectively, and a flow velocity
du (defined as positive in the positive x direction) is induced. Define a
control volume that encloses the plane of discontinuity and is moving in the
positive x direction at the constant velocity ¢;. Assume that the length of
the control volume in the x direction is constant. The gas is an ideal gas
with constant specific heats. The specific heat ratio of the gas is ¥. Answer

the following questions.

(1) Derive the relationship among ¢y, po, dp, and du by applying the
conservation of mass to the control volume.

(2) Derive the relationship among ¢y, py, dp, and du by applying the
conservation of momentum to the control volume.

(3) Answer the direction of the induced velocity for the cases dp > 0
and dp < 0, respectively.

(4) Express the propagation speed of the plane of discontinuity ¢,

using pg., po, dp, or dp, whichever are necessary.

(5) Assume that the state change of the gas is regarded as an isentropic
process. Express the propagation speed of the plane of discontinuity

Co using po, po, and y.
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Density p

po +dp

Po

Propagation speed ¢

Pressure p

po +dp

Po

Velocity u

duI

0!

Figure 2-1
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II.

Answer the following questions regarding inviscid compressible flows.

(1) Fill in the blanks @ |-l @ in the following text with

appropriate mathematical expressions or words.

An object with a characteristic length of L is placed in a uniform
gas flow with a velocity of U, a pressure of p.,, and a density of p,.
The flow is inviscid and compressible. The state of the gas changes

isentropically. The flow of the gas is described by the following

equations.
dp
= . = 2-1
5 TV (w =0, (2-1)
au+( Vu = 1V 2-2
ac " u_—p P, (2-2)
P _ Po
o 2-3)

where p is the density, u is the velocity, p is the pressure, t is the
time, and y is the specific heat ratio.

The velocity u, the position X, the time ¢, the pressure p, and the
density p are nondimensionalized using the following relations. Here,

the superscripts * indicate that the quantities are nondimensionalized.

Ust p

* * X t* i * * p
u :—’ X =—, =—,
L L P

e T pe

Besides, the ratio of the velocity U, to the sound speed a. in the

uniform flow,

Us
Mm =—-
Ao
is also a nondimensionalized quantity and is called the @®

number.
The partial differentiations with respect to t* and t are related

through
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The vector differential operators with respect to x* and x are related

through

v=[ ®@ ]v.

On the basis of these relationships, Equations (2-1) through (2-3)
are rewritten using only the nondimensionalized quantities (u*,x", t",
p*,p", M, and y) and the differential operators with respect to the

. : . .. 9 .
nondimensionalized quantities (57 and V7) as follows:

ap”

= 2-4
FYel @ 0, (2-4)
du’
-+ ® |[=| ® |V, (2-5)
at*
p*
?-}-’-z ® . (2'6)

(2) Explain the required condition(s) for two inviscid compressible

flows to be similar.
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