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Mechanical Engineering (Thermal Engineering) Problem 1

Consider the system as shown in Figure 1-1 where a valved tank of a
constant volume of ¥, is placed in the ambient gas with a constant

temperature, 7, and a constant pressure, p,. In the initial state, the valve

is closed, and the tank is filled with the gas that is identical to the ambient
gas with a temperature, 7], and a pressure, p,(< p,). Here, consider the

case where the valve will be opened to let the ambient gas flow into the

tank, and will be closed when the pressure in the tank becomes equal to
the ambient pressure p,. Assume that the gas is an ideal gas with a

constant specific-heat ratio, x, and a constant gas constant, R. The wall
of the tank and that of the valve are thermally insulated. The flow in the
valve is subsonic, and is neglected elsewhere. The temperature and the
pressure in the tank are kept homogenous because the gas that flows into
the tank is immediately mixed with the gas in the tank. Answer the
following questions.

First, consider the case where the gas flow in the valve is isenthalpic.

(1) Find two irreversible processes that have increased the entropy of
this system when the valve is open.

(2) Obtain the mass of the gas that has flowed into the tank and the
temperature in the tank after the valve is closed. Show the derivation

process.

(3) Obtain the amount of heat generated in the system during the period
when the valve is open. Show the derivation process.

Next, consider the case where the gas flow in the valve is isentropic.
(4) Obtain the mass of the gas that has flowed into the tank and the

temperature in the tank after the valve is closed, respectively. Show

the derivation process.
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Mechanical Engineering (Thermal Engineering) Problem 2

As shown in Figure 2-1, consider the one-dimensional steady heat
conduction in the x direction based on the kinetic gas ‘theory. In this system,
the temperature gradient along the x direction is constant, and fluid flow in

the system is neglected. The space between the hot thermostat at a
temperature 7;; (x<x,) and the cold thermostat at a temperature 7

(x2x.) is filled with monoatomic molecules of mass m at a constant
number density », and heat is transferred from the hot thermostat to the cold
thermostat by the collisions between molecules. Here, assume that the
internal energy of the gas is only translational kinetic energy of the

molecules, and the velocity components of the molecules at temperature T,
u, v, w inthe x, y,and z directions follow the Maxwell’s velocity

distribution function f(u,v,w)

3/2
m m {, 4 2
SV, W)= | —— ——+ v+ :
ASAY (anTJ eXp{ 2T 4+ )}

where k& is the Boltzmann constant. Therefore, the averaged molecular speed
¢ is given by

¢ = J: Ji j:Vuz +V7 W f(u, v, widudvdw .

Answer the following questions. Show the derivation process. Use the

following equations if necessary.

J exp —ax’ \j_ j xexp —ax® dx—L
j_':x” exp(—ax?)dx = 1:3-5-- (2b 1) ( =z I X exp(—ar?)d = 2b;+.

where a is a positive real number, and » is a positive integer.

(1)} Obtain the expression of the averaged molecular speed # by using &,
T,and m.

Next, as shown in Figure 2-2, consider molecules traveling across
the plane P located at the position x=x, between the time 7, and the time

t,+At. Here At is ashort time interval. Assume that molecules with a

velocity component in the x direction, u, pass through the plane P

without collisions with other molecules during A¢ from the position where
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they were located at the time ¢,. In this case, molecules that were between
the plane P and the plane P' located at the position x=x, —uAt pass

through the plane P during the time Af. Here, it is assumed that the
velocity distribution function of a molecule between the plane P and the
plane P' is equal to that of a molecule at the plane P.

(2) Obtain the number of the molecules traveling across the plane P in the

positive direction of the x axis per unit area and unit time.

(3) Obtain the amount of heat carried by the molecules traveling across the
plane P in the positive direction of the x axis per unit area and time.

Finally, consider a small length [ related to the mean-free path of
the gas. Assume that the net heat flux at the plane P is defined by the
difference between the amount of heat carried by the molecules traveling
across the plane Q located at the position x=x,—//2 per unit area and unit

time in the positive x direction and the amount of heat carried by the
molecules traveling across the plane R located at the position x=x,+//2

per unit area and unit time in the negative x direction. In addition, assume

that the velocity distribution functions of the molecules traveling across the
planes Q and R are represented by the velocity distribution functions at

the corresponding planes.

(4) Obtain the expression of the thermal conductivity A by using », k, &,
and /.
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Mechanical Engineering (Fluid Dynamics) Problem 3

Fill the blanks in the following text with appropriate words for
blanks 1, 2, 14, 15 and 16, and fill the other blanks with an appropriate
number or mathematical formula.

Consider a two-dimensional flow in a x—y plane. The fluid is assumed to
be a Newtonian and incompressible fluid. The governing equations for this
flow arecalled ( 1 )and( 2 ), which represent mass and momentum

conservation, respectively.

Hereafter, the velocity components in the x and y directions are
denoted by U and ¥V, respectively. The fluid density is denoted by p
and the coefficient of viscosity is denoted by . At the time /=14,
assume U(x,y,1,)=4,sin(kx)cos(ky). Here, positive real constants 4,
and k represent the amplitude and the wavenumber, respectively. When
the average of 7 inthe y direction is zero for an arbitrary x, the
spatial distribution of ¥ at ¢=¢, can be obtained as

V(x,:,)= (3 )byusing( 1 ). This flow field has a vorticity
component in the z direction perpendicular to the x—y plane, and its

value is @, (x,y,4,)= ( 4 ). The stream function of this flow field is
given by t//(x,y,to)= { 5 ), when y/(O,O,L‘O)zO. By taking the
divergence of both the sides of ( 2 )} and removing all the terms that

become zero due to{ 1 ), a partial differential equation that
determines the spatial distribution of the pressure, P(x,y,t), can be

obtained as ( 6 ). This equation is called the pressure Poisson equation.

Consider the following four points,

(x,y)=(0,7:/(2k)), (0,0), (#/%,0), (ﬂ/k,ir/(Zk)), in the x—y plane and
denote them as A, B, C and D, respectively. Taking the control volume
ABCD, which is the rectangle defined by the four points, consider the
momentum conservation in the x direction within the control volume
ABCD. For the following blanks 7, 8, 9, 10 and 11, give the quantities per
unit length in the z direction. At ¢=¢,, the integral of the momentum in

the x direction within the control volume ABCD is( 7 ). The amount
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of the momentum in the x direction flowing into the control volume
ABCD by convection across the boundary BC connecting the points B and
C per unit time is zero. The surface force in the x direction acting on the
control volume ABCD at the boundary BCis ( 8 ). The amount of the
momentum in the x direction flowing into the control volume ABCD by
convection across the boundary DA per unit time is zero. The surface
force in the x direction acting on the control volume ABCD at the
boundary DA is ( 9 ). At the boundaries AB and CD, the amount of the
momentum in the x direction flowing into the control volume ABCD per
unit time is zero. As for the surface forces in the x direction acting on
the control volume ABCD at the boundaries AB and CD, the forces due to
the pressure are cancelled out due to the symmetry of the flow field.
Therefore, without taking into consideration the contribution from the
pressure, the surface forces in the x direction acting on the control
volume ABCD at the boundaries AB and CD are equal, and their value is
( 10 ). From the above results, the decrease of the momentum in the x
‘direction in the control volume ABCD per unite time is ( 11 ).

Next, consider the time evolution of the above flow field. Assume that U
at an arbitrary time ¢ can be expressed by U(x,y,t)=A(¢)sin(kx)cos(ky),

where A(t,) = 4,. Based on the momentum conservation in the control
volume ABCD, the ordinary differential equation for A(z) is described as

d4/d¢= ( 12 )byusingd, p, u, k.Takinginto account the
initial condition at ¢=¢;, and integrating the ordinary differential equation

in time, the time evolution of A4 is obtained as A(f)= ( 13 ). From

this result, it is found that the kinetic energy of the fluid decreases with

time. This can be explained by the fact that ( 14 ) of the fluid converts
the kinetic energy into ( 15 ). Place particles in the x—y plane at
t={,, and assume that they completely follow the local fluid velocity.

Each particle moves along a curve with an identical value of { 16 ) at
t =¢,. Within the region of |x| <z/k and |y| <7z /k, the number of

locations where a particle stays atrestis (17 ).
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Mechanical Enéineering (Fluid Dynamics) Problem 4

Consider an axisymmetric “Rankine vortex™ of an incompressible fluid with
a density p and a coefficient of viscosity u. Assume that the Rankine vortex has
only tangential-velocity component, vg(r) and its distribution is uniform in the
direction of the axis of the vortex. r is the distance from the center of the vortex
(hereafter, referred to as radius), and vg{r) can be represented by,

v(r) v
L)=—0 for 0<r=<y (D
r Y
and,
Vo (F)=nv foxr 7 <r )

as shown in Figure 4-1. The region where 0 < < 1, is called the “viscous-core”
region while that where ry; < r the “free-vortex™ region. Let [ = 2mryv, be the
circulation in the free-vortex region, p(r) be the pressure at radius r, and p., be
the pressure at the infinite distance (r = r,,). Assume that both 7, and v, are kept
constant, and the flow is kept steady. Answer Question (1) through Question (3).
Show the derivation to each of the answers.

o

Figure 4-1

(1) Represent vg(r) byusing r, ry and Iy, and find p() as a function of r.
(2) Find the kinetic energy in the viscous-core region per unit axial length.
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(3) Consider the interface between the viscous-core region and the free-vortex region
at r = ry. Obtain the work done by the shear stress at this interface per unit time,
to the viscous-core region and to the free-vortex region, per unit axial length,

‘ respectively: Find the rate of dissipation per unit axial length, by assuming that
the dissipation at r = 1y can be neglected.

Next, consider an axisymmetric “Rankine vortex” of an incompressible fluid
decaying with time. Assume that the “viscous-core radius”, r, will increase while
the tangential velocity at the viscous-core radius, v, will decrease with the
circulation Iy = 2Zmryv, at the viscous-core radius kept constant, as shown in Figure
4-2. The tangential-velocity vg in the viscous-core region and that in the free-vortex
region are both represented by the above-described equations (1) and (2). Let dry be
the small increase in the viscous-core radius during a small time dt, then the
decrease in the kinetic energy in the free-vortex region per unit axial length during
dt can be represented by,

phy? dry
inm 1y

(4) Find ry(t) as a function of ¢.
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