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'FYZO 19 Department of Mechanical Engineering

Master Course Program Entrance Examination
 “Mechanical Engineering” (Part 1)

2018/8/28(Tuesday) 9 : 00~11:00

Instructions

Do not open the exam booklet until you are instructed to begin.

Answer all Questions in Problems 1 and 2.

If you find some incomplete printing or collating, report them to the proctor.

Make sure that you have all 4 answer sheets. Let the proctor know otherwise.

Use 2 answer sheets for each Problem. If there are Questions I and IIin a Problem,

use one answer sheet for one Question. If there are Questions I ,II and Il in a
Problem, follow the instruction at the top of the Problem. If the space on the front

side of the answer sheet is not enough, you may also use the backside. If the space

. is still not enough, ask the proctor for an additional answer sheet.

6. On each answer sheet, writé your examinee number (candidate number) and the
Problem number in the designated boxes. If you fail to do so, the answer sheet may
not be graded. Write “Mechanical Engineering (Part 1)” in “Subject”. Leave “(
of )” blank unless you use an additional answer sheet for the Problem. ,

7. Answer sheets with symbols or signs that are not related to the answers may be
judged invalid. '

8.  Hand in all the answer sheets even if you have not used them.

9. You are provided with 2 worksheets. Write your examinee number (candidate
number) on the upper left corner of each worksheet.

10. Hand in both worksheets even if you have not used them.

11. You may take home the exam booklet.
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Problem 1

Answer both of the following Questions I and II. Use one answer sheet for
Question I and use another answer sheet for Question II.

L. As shown in Figure 1-1, in a room surrounded by adiabatic walls, -

| different ideal gases A and B at the same pressure are initially divided by
a separation wall. The temperature, molar amount, and molar heat capacity
of gas A are Ta, na, and Ca, and the temperature, molar amount, and molar
heat capacity of gas B are Ts, np, and Cp. The separation wall is then
removed, and the gasses mix and reach equilibriu'm. Answer the following
questions related to the entropy change AS of the mixing process. The .
universal gas constant is Ro, Boltzmann constant is kg, and Avogadro

~number is Na.

(1)  When Ta = T, derive the following equation.

AS =R, {nA ln[nA+nB]+-nB h{MJ} (1-1)
: n, Ny

(2) When Ta # T, obtain AS.

(3)  Show that AS in Question (2) is positive. You may use Equation
(1-2) that applies to non-negative real numbers C and D, and weights
cand f(0<a<1,0<p<1,a+p=1).

aC+pD>C*D" \ (1-2)

(4)  From a microscopic viewpoint, entropy can be expressed as

S = kslnW, where W is the number of possible microscopic states of
the gas molecules for given temperature and volume. When Ta = T,
we define the values of W before and after the mixing as W1 and W>,
and express the ratio with Equation (1-3).

I/VZ (nANa+nBNa)!

AN CNAICN AL (-3
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Derive Equation (1-1) from a microscopic viewpoint. You may use

Stirling’s approximation in Equation (1-4).

ln(n!)znlnn.—n | o (1-4)

Here, n is a positive integer.

(5) Based on Question (4), show that the mixing is an irreversible

process from a microscopic viewpoint.

adiabatic wall

T e
Z
T s

N

Figure 1-1
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IL.

Let’s consider the steady heat exchange between liquid and gas.
As shown in Figure 1-2, liquid at higher temperature 71 and gas at lower
temperature 7 are separated by a metal plate with thickness d. In order to
enhance the heat exchange, a cylindrical fin with radius R and length L is .
attached to the metal i)late on the gas side. Here, we consider the
temperature variation along the thickness direction of the metal plate and
assume that the temperatufe variation in the plane direction perpendicular
to the thickness direction is negligible. The fin is made of the same
material as the metal plate and is fused to the metal plate. The thermal
conductivity of this material is 4. We define the x-coordinate from the ‘
origin O at the center of the root of the fin. Heat transfer coefficients are
hr on the liquid side and Ag on the gas side. The metal plate area on the
liquid side is 4. The heat transfer from the tip of the fin is ignored
(assumed as insulated) and the uniform temperature distribution in cross-
sections perpendicular to the x-axis is assumed. Answer the following
questions.

e)) Let’s consider the temperature distribution along the fin axis.
Describe the conservation of energy in a control volume with small
axial length dx as shown in Figure 1-3. Then, using Fourier’s law, -
obtain the differentialequation describing the one-dimensional |
temperature distribution 7(x) along the fin axis.

(2) Obtain the temperature distribution along the fin axis. Here
the temperature at the root of the fin is To.

3) . Obtain the heat transfer rate Qr from the fin surface. Then,
obtain the fin efficiency 7 which is defined as the following ratio.

-9
Oriceal

Here, Q.. is the heat transfer rate from the fin surface under the

n

assumption that the fin surface temperature is constant and is the

same as the temperature at the root of the fin, 7.
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4) ‘Let’s consider a simpler system without the fin. Express the

overall heat transfer coefficient K between liquid and gas with
A, b, hs, d,and 4. The overall heat transfer coefficient X is defined

as O=K(T, -T;) with the heat transfer rate  between liquid and

gas. Then, obtain the total thermal resistance R;= 1/K as a sum of

several thermal resistances.

(5) - Inthe case of the metal plate with a fin in Figure 1-2, the heat
transfer from the metal surface to gas is the sum of heat transfer from
area Ao, expressed as 4 minus the area of the fin root, and the heat
transfer Qr from the area of the fin surface 4. Obtain the total
thermal resistance R; in the case with the fin. Then, explain why the
fin efficiency 7 defined in Question (3) is useful for the practical |
thermal design of heat transfer surface with a fin. '

Liquid Gas

, T,

TL . hG G

~NA j he
hy, 0] [\ IR
\J
L
4 / d
Q >
Figure 1-2
0O

Figure 1-3
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Problem 2

We will consider the flow around a propeller attached to a ship, in a
control volume with its side surface aligned to a streamtube as shown by
the déshed line in Figure 2-1. Assume that the flow in the control volume
is a one-dimensional steady incompressible flow, and generation of loss
and effects of gravity can both be neglected. The pressure at the inlet and
outlet cross sections of the control volume are equal, and force on the side
surface of the control volume can be neglected. The flow with a mass flow
rate of M enters the control volume at a velocity V; equal to the ship
velocity. The flow, having been accelerated by the propeller, goes out of

the control volume at a velocity V,. Answer the following questions.

(1) Obtain the thrust force of the propeller.

(2) Obtain the work W; that the propeller does on the ship pver
unit time.

3)  Obtain the work W, that the propeller does on the fluid per
unit time. ‘

4) Obtain the difference between W; and W,, AW =W, — Wj.

Then, explain what AW represents physically.

Inlet of control )
volum , Outlet of control -
T e e volume
— Ry et St ity it :
W M —
T e e e e e e e e e ————— —penmmnn IR T

Side surface of control volume=streamtube of flow

Figure 2-1
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- Next, by taking generation of loss into account, we will consider the
flow around the propeller rotating at a constant angular velocity of w. As
‘shown in the left figure of Figure 2-2, the propeller has five identical
blades installed with a constant pitch in the circumferential direction. The
right figure represents the relation between the flow and fluid force on the
cylindrical surface at the representative radius, 75. The flow that enters
the propeller has a velocity component only in the direction of the axis of
rotation of the propeller and is uniform in the cross section perpendicular
to the rotational axis. The velocity component is equal to V,. For
simplicity, we assume that the flow around the blades does not have a
radial velocity component, and that the fluid force F that acts on one
blade can be represented by a lift coefficient €y, and a drag coefficient
Cp, of the blade defined by the following equations,

CLleL , CDleD ,
5pU 28 5pU s

where U is the relative-velocity magnitude of the flow that enters the
blades at the representative radius, r,. Fy, and Fp, are the components of
the fluid force F acting on one blade, respectively in the direction
perpendicular to (lift force), and parallél to (drag force), the relative
_velocity U. p is the density of the fluid, and S is the representative area
of one blade. The torque that acts on one blade can be computed by
assuming that the above-mentioned fluid force acts at the representative
radius 7,. Answer the following questions.

(5) Represent the thrust force Fp and torque Tp of the propeller
by using the lift coefficient Cy, the drag coefficient Cp and other
necessary variables. '

(6) The propeller efficiency 7 is defined by the work that the
propeller does on the ship per unit time divided by the work
generated by the propeller per unit time. Express 7 by using the lift
coefficient Cy; the drag coefficient Cp and other necessary
variables. |
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| N Based on the results of Question (1) through Question (6),
propose two methods to improve the propeller efficiency for the same
ship velocity with the thrust of the propeller kept constant.

Figure 2-2
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