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FY2018 Department of Mechanical Engineering

Master Course Program Entrance Examination
“Mechanical Engineering” (Part 1)

2017/8/29(Tuesday) 9 : 00~11:00

Instructions

Do not open the exam booklet until you are instructed to begin.

Answer all Questions in Problems 1 and 2.

If you find some incomplete printing or collating, report them to the proctor.

Make sure that you have all 4 answer sheets. Let the proctor know otherwise.

Use 2 answer sheets for each Problem. If there are Questions I and Iin a Problem,

use one answer sheet for one Question. If there are Questions I ,1I and Il in a

Problem, follow the instruction at the top of the Problem. If the space on the front

side of the answer sheet is not enough, you may also use the backside. If the space

is still not enough, ask the proctor for an additional answer sheet.

6. On each answer sheet, write your candidate number and the Problem number in
the designated boxes. If you fail to do so, the answer sheet may not be graded.
Write “Mechanical Engineering (Part 1)” in “Subject”. Leave “(  of )’ blank unless
you use an additional answer sheet for the Problem.

7. Answer sheets with symbols and signs that are not related the answers may be

" judged invalid.

8. Hand in all the answer sheets even if you have not used them.

9. You are provided with 2 worksheets. Write your reglstratlon number on the upper
left corner of each worksheet.

10. Hand in both worksheets even if you have not used them.

111. You may take home the exam booklet.
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Problem 1

Answer both of the following Questions I and II. Use one answer sheet for
Question I and use another answer sheet for Question II.

I. Consider an ideal Otto cycle, the P-¥ and 7-S diagrams of which are
shown in Figure 1-1. Here, ¥ and § are the volume and entropy of the
working gas in the cylinder. The working gas is an ideal gas and Cv is the
molar specific heat at constant volume of the working gas. The change of
Cv due to temperature change is negligible. Ro is the universal gas constant.
The amount of the working gas in the cylinder at State 1 is # {mol]. Smin is
the entropy at State 1, Tmin, Pmax and Tmax, Vmin are the temperatures and
volumes at State 1 and State 3, respectively, £ is the compression ratio (e=
Viax/Vmin), and Po is the atmospheric pressure. By using the variables and
constants given in the problem statements, answer the following questions,

(1) It is known that the relationship between temperature 7 and volume
V, TV? = constant, holds during the process between State 1 and State
2. Derive a from the first law of thermodynamics. Show the derivation
process, too.

(2) Obtain temperature 72 at State 2.

(3) Obtain the amount of heat, Q2,3, which the working gas receives
during the process between State 2 and State 3.

(4) Obtain the entropy of the working gas, S3, at State 3.

(5) Obtain the thermal efficiency n of the Otto cycle shown in Figure
1-1. Show the derivation process, too.

(6) Compare the following two cases: one where the working gas is

helium and the other where the working gas is nitrogen. In which case
is the thermal efficiency 7 larger? Describe the reason for it.
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Next, consider an Otto cycle with intake and exhaust processes as
shown in Figure 1-2. When the intake and exhaust processes are
considered, the piston reciprocates twice in a cycle. During the exhaust
process, the volume ¥ changes from Vmax (State 4) to Vimin (point A in
Figure 1-2) while the pressure P is constant. During the process between
point A and point B in Figure 1-2, the working gas in the cylinder is
cooled while the volume ¥V is constant, The temperature T at point B is
Tmin. During the intake process, the volume ¥ changes from Vmin (point B

in Figure 1-2) to Pmax (State 1) while the pressure P is constant, Answer
the following questions.

(7) Obtain the work done by the piston, Wisa, during the exhaust

process. The back pressure of the piston is the atmospheric pressure
(Po).

(8) Obtain the thermal efficiency 7’ of the Otto cycle with the intake
and exhaust processes. Show the derivation process, too.

P T
State 3 q 3
Tmax - tate
State 2 State 4
- State 2 State 4 ™,
ate
T min v\
_State 1 State 1
0 4 0
Vmin - Vmax Smin S
Figure 1-1
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II. As shown in Figure 1-3, a thin wire with a dimeter of d and a length of
! is placed perpendicularly to uniform air flow with a velocity of uy, a
temperature of T, and a thermal conductivity of . The wire is
uniformly heated by electric current, and let ¢ be the heating value of the
wire per unit time and per unit volume. T, Ax, and § are constant. Both
ends of the wire are thermally insulated, and the effects of the ends can be
neglected. The thermal conductivity of the wire is very high, and 7
therefore, the temperature distribution in the wire can be regarded as
being uniform. The thermal capacity of the wire is negligibly small.
Ignore the effects of natural convection and radiative heat transfer.
Answer the following questions. |

Thin wire
(diameter d, length I)

Air (velocity we,. temperature T,
thermal conductivity 1)

Figure 1-3

(1) Let the heat transfer coefficient of the wire (circumferentially
averaged value) be h. Find the temperature of the wire Ty as a
function of Uy, Tw, Aw, d. I, h, and/or q.

(2) As was shown in Question (1), the temperature of the wire is a
function of the heat transfer coefficient. Note that the heat transfer
coefficient of the wire changes when the air-flow velocity te,
changes. Hence, we would like to use this wire as a sensor to
measure the velocity u, by measuring the temperature change of the
wire. When uq, =15 m/s and d =1 pm, schematically draw the
streamlines of the flow around the wire, where the dynamic viscosity
v of the air is 1.5 X 1075 m?/s.
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(3) Under the conditions shown in Question (2), the velocity of the air
flow fluctuates with an amplitude of +1.5 m/s around the average
value of u, =15 m/s. Let the frequency of the fluctuation be £.
Discuss the dynamic characteristics (followability) of this sensor.
You should note that the flow around an obstacle placed in a uniform
flow, in general, reaches a statistically equilibrium state when time 7
has passed for which the distance represented by the flow velocity

Uy X time T becomes equal to 5 to 10 times the representing length
of the obstacle. '

(4) Under the conditions shown in Question (3), let f be 1.0 kHz.
The Nusselt number N, (circumferentially averaged value) based on
the diameter of the wire is 1.0 when the air-flow velocity u, is
15 m/s. N, is proportional to the 0.3™ power of the Reynolds-
number, When ¢ = 1.0 x 10*® W/m? and T, = 20 °C, schematically
draw the temperature change of the wire. Let the thermal
conductivity A, of the air be 0.025 W/(m - K).

Then, to prevent the output of the sensor from changing due to the
adhesion of the dust in the air flow to the wire, we coated the wire with
some coating material with an outer diameter of D, the length of [, a
density of p, a specific heat of Cp, and a thermal conductivity of A, as
shown in Figure 1-4. These properties of the coating material are constant.
Answer the following questions.

Alr (velocity 1, temperature T,
thermal conductivity A.,)

Thin wire
(diameter d, lengthl)

Coating

(outer diameter D, length i, density p,
specific heat Cp, thermal coductivity 1)

Figure 1-4
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Figure 1-5

(5) By considering balance of heat in the control volume surrounded
by the dashed lines in Figure 1-5, derive the governing equation for

the radial distribution of the temperature, T(v), (r denotes the radial
position) in the coating material. Assume that the temperature
distribution in the coating material is uniform in the circumferential
and axial directions. Show the boundary conditions at the inner (r =
d/2) and outer (r = D/2) surfaces of the coating material by using
U, Twos Aws P, Cp, A, d, D, I, h, and/or ¢. Here, h is the
heat transfer coefficient (circumferentially averaged value) at the
outer surface of the coating material.

(6) In Question (5), if the air-flow velocity is constant, the temperature

Ty of the wire also becomes constant after a certain time has passed.

~Find this temperature Ty of the wire.

(7) Let p be 2.5x 10% kg/m3, Cp be 8.0 x 102 J/(kg-K), 1 be

1.0 W/(m-K), and D be 1.0 mm. By estimating the order of each of
the terms in the governing equation that you have found in Question
(5) to represent the temperature distribution in the coating material,
discuss how the dynamic characteristics of the sensor changes
compared to that under the conditions shown in Question (3).
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Problem 2

Answer all of the following Questions I, IT and III. Use one answer sheet for
Question I and use another answer sheet for Questions II and III.

I. Space between two parallel plates is filled with quiescent fluid, and
along its center line an object is towed at a constant speed of U, by an
external force F. The x and y axes are defined as shown in Figure 2-1(a).
The flow field is two-dimensional and symmetric against the center line y
= 0. The flow is incompressible and steady. The fluid density is p. The
distance between the two plates is 2a. Consider a control volume 1-2-3-4-1
which moves with the object and whose height in the y direction is 2a, as
shown by the dotted line in Figure 2-1(a). The boundary 1-2 is located

sufficiently upsiream the object, so that the pressure and the velocity in the
x direction along the boundary 1-2 are given by p=2F, (constant) and

u=U, (constant), respectively. As shown in Figure 2-1(b), the velocity in

the x direction along the boundary 3-4 is ¥ = 0 for 0$|y|<g-, whereas

u=U, for %sMSa. The boundary layers along the two plates can be

neglected. Consider unit length in the direction perpendicular to the plane
of the sheet. Answer the following questions.

@ ® 4y
d LLLLLLLLLLL L LI L L2 A
U
e BT ol PR
o
F gy »=- X 4
VR EA -
— 1
a g2
— >
2 3 I
TTI7T77 77777777 a
Figure 2-1
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(1) Express U, by using U,.

(2) Express the pressure A for gs|y|s a along the boundary 3-4 by
using F,, p and U,. Here, the loss along the streamline as shown

by the dashed line in Figure 2-1(a) can be neglected.

(3) Consider the momentum balance in the control volume 1-2-3-4-1
in the x direction. By using a, p and U,, express the external force

F and the work per unit time, W], required for towing the object.

Here, the pressure along the boundary 3-4 can be assumed to be
uniform.

Next, as shown in Figure 2-2(a), consider another case where the object
intakes the fluid and ejects it downstream by a pump M. The loss along the

streamline shown with the dashed line can be neglected. In this case, the
object moves at a constant velocity of U, in the quiescent fluid without

an external force. Due to the ejection, the velocity in the x direction on the

boundary 3-4 is u=U, for §s|y|s a, u=0 for —;—S|yl<g, and u=U,
for 0< |y|< g—, where ¢ <a, as shown in Figure 2-2(b). The pressure on the

boundary 3-4 can be assumed to be uniform. Answer the following

»

questions.
4) Express U, and U,; by using a, ¢ and U,.
2 3 0

(5) Consider the case where ¢=a/9. By using p, U,, and a, express
the work per unit time, W,, done by the pump. The pump loss can be

neglected.
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II. Fill in the blanks in the following text related to the potential flow of an
incompressible, inviscid fluid with appropriate words or equations.

The flow field for which ( @ ) is zero satisfies the Euler equations,
' Thus, when we define the velocity vector ¥ with a scalar function ¢ as
( @ ), ( @ ) becomes always zero, so that such a velocity field
satisfies the Euler equations. For this velocity field defined with ¢ to
satisfy the continuity equation, the function ¢ should satisfy a partial
differential equation ( @ ). Such a function ¢ is called ( @ )
potential. On the other hand, when we define the x and y velocity
components u and v inatwo-dimensional flow fieldas ( & )by using
the stream function ¥, ( ® )isalways satisfied. For( @ ) to be zero,
the strcém function 1 should satisfy a partial differential equation
( @ ).

Here, we define a complex function f = ¢ + iy in acomplex plane z=
x +ty. Since the Cauchy-Riemann relations hold for the function f, its
derivative is independent of the direction of differentiation. Therefore, it
can be shown that df/dz is given by ( } using u# and v. This
function f iscalled ( @ ). For example, by using ( ), the flow
defined by f(z)=Uz gives u= ( @ )and v=( @ ). On the
other hand, f(z) =alogz (a: real number, a > 0) corresponds to a flow
field with ( @ ). By combining these two functions, the flow field is
defined by f(2) = Uz +logz. In this case, the coordinate of the stagnation
pointis ( @ ), and the value of the stream function 1 at this stagnation
point is ( @ ). By examining the streamlines passing through the

stagnation point, it is shown that this flow corresponds to a flow around

( ® ).

III. Consider an incompressible flow between infinitely-long concentric
bylinders (Inner radius: Ry, Outer radius: R,) as shown in Figure 2-3. The
outer cylinder rotates with an angular velocity of (2, while the inner
cylinder is stationary. The flow.velocity in the axial direction is zero. Here,
x, 0, and 7, respectively, denote the coordiates in the axial, circumferential,
and radial directions, u,, ug, and u, are the velocity components in each
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direction, and p, p and pu are the pressure, the density, and the viscosity.
The flow is homogeneous in the circumferential direction. Assume the

steady laminar flow, and answer the following questions.

(1) For incompressible flows in general, the continuity equation in the
cylindrical coordinate system is given by the following equation.
Delete terms that become zero for the given problem, and obtain the

simplest form,

1 %, 1au9 aux

( Up) + axuo

(2) Give the boundary conditions for us and wu,.

(3) Obtain u, using the results of Questions (1) and (2).

(4) For steady incompressible flows in general, the Navier-Stokes
equations in the cylindrical coordinate system are given by the

following equations. Delete terms that become zero for the given

problem, and obtain the simplest form.

L dp 6{ ru )} 18%u, 2 6u9+62ur
72 982 12 9g dx?

oug . Ug dug  Upily aug)
p(ur 8r r 08 Mgy , ,
_ 1dp 0 (1d 1 0%ug 2 du, 8%ug

T rag Br{ra )]+r_2- 362 "2 98 T o

( ou, LYo aux+ aux) N 6p+ 18 ( aux) 1 0%u, 0%u,
P\ B T 7 a8 T Y ox ax T H|rer\" ar ) Tr2 a0z T axe

(5) By solving the differential equation for uy derived in Question (4),"

obtain uy.

(6)  Obtain the torque T exerted on the inner cylinder around the x axis

per unit axial length.
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(7) Express the pressure difference between the inner and outer surfaces
Ap for Ra/R1=v2 by using p, R,, and f2.

X
R,
Q==

Figure 2-3
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