平成29年度機械工学専攻

大学院修士課程入学試験問題

「機械工学」(第1部)

試験日時:平成28年8月30日(火) 9:00~11:00

注意事項

- 1. 試験開始の合図があるまで、この問題冊子を開かないこと.
- 2. 問題は問題1から問題2まである. 全間に解答すること.
- 3. 問題の落丁、乱丁、あるいは印刷不鮮明な箇所があれば申し出ること.
- 4. 答案用紙は4枚配付される. 枚数を確認し, 過不足があれば申し出ること.
- 5. 問題ごとに2枚の答案用紙を用いて解答すること. 設問 I, II に分かれている問題は, 設問ごとに1枚の答案用紙を用いて解答すること. 解答を表面で書ききれない時は, 裏面にわたってもよい. なお, それでも解答するスペースが不足する場合は答案用紙を与えるので申し出ること.
- 6. 答案用紙の指定された箇所に、自分の受験番号、その答案用紙で解答する問題番号を 記入すること、記入もれの場合は採点されないことがある。なお、科目名欄には「機 械工学(第1部)」と記入すること、答案用紙の右端にある「 /of 」については、 答案用紙を追加しない場合は空欄のままでよい、但し答案用紙を追加した場合は、問 題ごとの枚数を記載する。
- 7. 解答に関係のない記号や符号を記入した答案は無効となることがある.
- 8. 答案用紙は、解答ができなかった分も含め、全てを提出すること.
- 9. 下書き用紙は2枚配付される. 左上に自分の受験番号を記入すること.
- 10. 下書き用紙は、使用しなかった分も含め、2枚全部を提出すること.
- 11. 問題冊子は持ち帰ってよい.

FY2017 Department of Mechanical Engineering

Master Course Program Entrance Examination

"Mechanical Engineering" (Part 1)

2016/8/30 (Tuesday) $9:00\sim11:00$

Instructions

(

- 1. Do not open the exam booklet until you are instructed to begin.
- 2. Answer all Questions in Problems 1 and 2.
- 3. If you find some incomplete printing or collating, report them to the proctor.
- 4. Make sure that you have all 4 answer sheets. Let the proctor know otherwise.
- 5. Use 2 answer sheets for each Problem. If there are Questions I and II in a Problem, use one answer sheet for one Question. If the space on the front side of the answer sheet is not enough, you may also use the backside. If the space is still not enough, ask the proctor for an additional answer sheet.
- 6. On each answer sheet, write your candidate number and the Problem number in the designated boxes. If you fail to do so, the answer sheet may not be graded. Write "Mechanical Engineering (Part 1)" in "Subject". Leave "(/of)" blank unless you use an additional answer sheet for the Problem.
- 7. Answer sheets with symbols and signs that are not related the answers may be judged invalid.
- 8. Hand in all the answer sheets even if you have not used them.
- 9. You are provided with 2 worksheets. Write your registration number on the upper left corner of each worksheet.
- 10. Hand in both worksheets even if you have not used them.
- 11. You may take home the exam booklet.

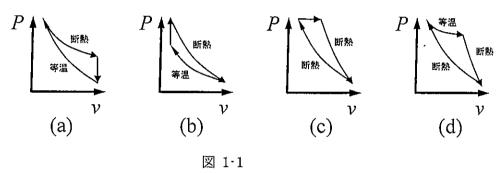
問題 1

下記の I, II の両方について解答せよ. なお, I の解答に答案用紙 1 枚を, II の解答に答案用紙 I 枚を, それぞれ用いること.

I. 以下の各設問に答えよ.

ここで、圧力 P, 比容積 ν , 比熱比 κ , プランク定数 h, 光速 c, ボルツマン定数 k_B とする.

(1) 内燃機関は様々な理論サイクルで表現される. 図 1-1 のスケッチの理論サイクルのうち, 理論上あり得ないものをすべて選び, その理由を述べよ.



- (2) ヘリウムと酸素とのモル比 2:3 の混合ガスの等エントロピー過程について, $Pv^{\kappa}=$ 一定, $\kappa=31/21$ の関係が成り立つことを示せ. ただし, 混合ガスは理想気体と考える.
- (3) オットーサイクル(断熱圧縮,等容加熱,断熱膨張,等容冷却のサイクル)の理論熱効率を導き,圧縮比 ε と比熱比 κ で表わせ.また,比熱比が小さくなると理論熱効率も減少することを示せ.

にある電磁波のエネルギー $D_{\nu \sim \nu + d\nu}$ を求めよ、さらに、振動数 ν を波長 λ に変換して、波長が λ から λ + $d\lambda$ の間にある電磁波のエネルギー $D_{\lambda \sim \lambda + d\lambda}$ を求めよ、

II. 図 1-2 に示すように、内径D、肉厚t、長さL、熱伝導率 λ_c の銅製の冷却管の中を密度 ρ 、比熱 C_P 、断面平均流速 U_0 の冷却水が流れており、冷却水の流速分布および温度分布は完全に発達している。一方、冷却管の外側には一様流速 U_∞ 、一様温度 T_∞ の高温の空気が冷却管と直交する方向に流れている。入口および出口における冷却水の混合平均温度をそれぞれ T_0 および T_1 とし、冷却管の内表面の温度 T_w 、および外表面の温度 T_a は場所により変化しない。冷却管の内側の熱伝達率 h_w 、および外側の平均熱伝達率 h_a も一定とする。輻射や重力の影響は考慮する必要はない、以下の設問に答えよ。

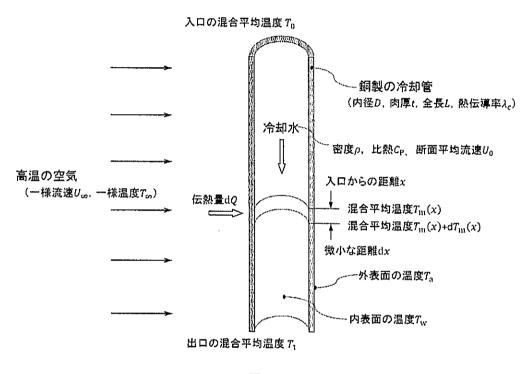
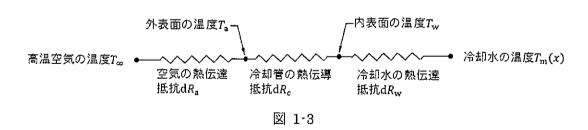


図 1-2



(1) 入口からの距離xの断面の混合平均温度を $T_m(x)$ とする.xと微小な距離 dxだけ離れた断面との間の単位時間当たりの伝熱量dQを温度差,熱伝達率,熱伝導率など必要な量を用いて三通りに表せ.この伝熱を図 1-3 に

示すような熱回路網モデルで表した場合,冷却管外側の熱抵抗 dR_a ,冷却管の熱抵抗 dR_c ,冷却管内側の熱抵抗 dR_w ,および全体の熱抵抗dRを求めよ。ただし,肉厚tは内径Dに比較して十分に薄いため,冷却管壁の内部(外表面と内表面との間)の温度分布は線形になるものと仮定し,冷却管外側の表面積は内側の表面積と同一とみなしてよい。

- (2) 断面xの混合平均温度を $T_m(x)$,断面(x+dx)の混合平均温度を $(T_m(x)+dT_m(x))$ とする.この二つの断面と冷却管の内表面とで囲まれた検査体積をとり,熱の収支を考える.まず,上流側の断面xから単位時間当たり持ち込まれる内部エネルギーを求めよ.同様にして,下流側の断面(x+dx)から単位時間当たり持ち出される内部エネルギーを求めよ.これらの結果を用いて,熱バランスを表す関係式を導け.
- (3) 設問(2)で求めた関係式を冷却管入口から出口まで積分することにより、冷却管の出口における混合平均温度 T_1 を、入口の混合平均温度 T_0 、冷却管の内表面の温度 T_w ・熱伝達率 h_w 、冷却水の密度 ρ 、比熱 C_p 、断面平均流速 U_0 、および冷却管の内径D、長さLを用いて表せ、また、この結果を用いて、単位時間当たりに高温空気から冷却水に受け渡される総伝熱量Oを求めよ、
- (4) 冷却管の内径Dを 20 mm, 肉厚tを 2 mm, 長さL を 1.0 m とし、冷却水の入口温度 T_0 を 20 $^{\circ}$ 、断面平均流速 U_0 を 1.0 m/s とする.また,高温空気の一様温度 T_∞ を 80 $^{\circ}$ 、一様流速 U_∞ を 10 m/s とする.この時,冷却管内表面のヌセルト数 Nu_w は断面平均流速 U_0 の 0.8 乗に比例し,その値は140であった.また,外表面のヌセルト数 Nu_a は一様流速 U_∞ の 0.6 乗に比例し,その値は60であった.いずれのヌセルト数も冷却管の内径Dを代表長さとしたものである.この条件において,設問(1)で求めた各熱抵抗の中で支配的なものは何になるか述べよ.また,総伝熱量Qは冷却水の断面平均流速 U_0 ,および高温空気の一様流速 U_∞ の変化に対してそれぞれどのように変化するかを論ぜよ.必要があれば表 1-1 に示す物性値(概略値)を用いよ.
- (5) 設問(4)の結果を用いて全体の熱抵抗を簡略化し、単位時間当たりに高温空気から冷却水に受け渡される総伝熱量Qを冷却水の入口の混合平均温度 T_0 ,高温空気の一様流速 U_∞ ,一様温度 T_∞ ,冷却水の密度 ρ ,比熱 C_P ,断面平均流速 U_0 ,冷却管の内径D,肉厚t,長さL,冷却管内側の熱伝達率

 $h_{
m w}$, 外側の熱伝達率 $h_{
m a}$, および冷却管の熱伝導率 $\lambda_{
m c}$ の中から必要なものを用いて表せ.

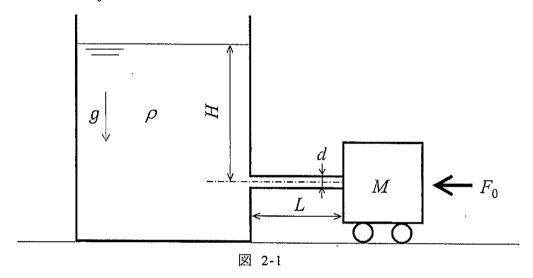
表 1-1

	密度 (kg/m³)	比熱 (J/kgK)	熱伝導率 (W/mK)	動粘性係数 (m²/s)
冷却管	9.0×10^{3}	4.0×10^2	4.0×10 ²	•
冷却水	1.0×10 ³	4.0×10³	0.6	1.0×10·6
高温空気	1.2	1.0×10³	0.03	2.0×10 ⁻⁵

問題 2

図 2-1 に示すように水を入れた容器に、水面から深さ H のところに長さ L、内径 d の円管が取り付けられている。d は、H および L より十分小さいとする。円管の出口には、質量 M の物体が押し付けられている。物体には車輪がついており、摩擦なく移動することができるとする。水の密度を ρ 、重力加速度を g として、以下の設問に答えよ。

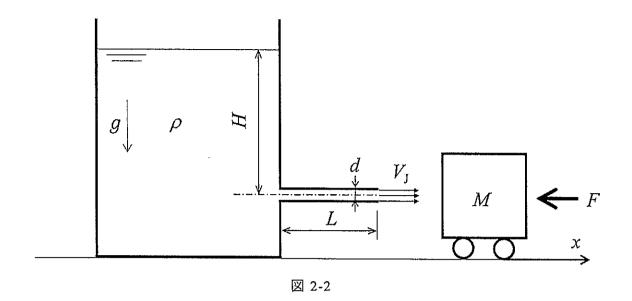
(1) 円管出口から水が流れ出ないように、物体を押し付けておくのに必要となる最小の力 F_0 を求めよ.



次に図 2-2 に示すように、物体を円管の出口から十分離した状態におき、物体に力Fを加える。このとき、円管の出口から流速 V_J で噴流が出ている。噴流は円管出口での直径dを保ったまま質量Mの物体に衝突している。その際、噴流は重力の影響による下方への速度成分を持たずに、水平位置を維持しているとする。また、噴流断面内の速度分布は一様な流速を持つとする。水を入れた容器内の水面の高さHは変化しないとする。

まず,損失のない場合を考える.

- (2) 円管出口の流速 1/2 を求めよ.
- (3) 物体には右側から力 $F = F_1$ が作用しており、物体は静止している. このときのカ F_1 を求めよ.
- (4) 物体表面の圧力(ゲージ圧)の最大値 P_{\max} を求めよ.
- (5) 力 F_1 により物体が静止した状態から、物体に加える力 F を設問(1)で求めた F_0 にした、図中右向き(x 方向)を正方向として、十分時間が経った後の物体の速度を求めよ。



次に、再び図 2-2 の状態で、円管に入口損失および管摩擦損失がある場合を考える。容器と円管の接合部における入口損失の損失係数を ζ 、管摩擦損失の管摩擦係数を λ とする。ただし、 λ は、断面平均流速 \overline{u} と円管両端の圧力差 ΔP を用いて、次の関係式で定義されるとする。

$$\frac{\Delta P}{\rho} = \lambda \frac{L}{d} \frac{\overline{u}^2}{2}$$

円管内の流速が十分小さい場合には流れは層流となる。今,十分発達した層流の状態を考え、定数 α ,円管内径d,円管中心からの距離rを用いて,円管内の速度分布を

$$u = \alpha \left\{ \left(\frac{d}{2} \right)^2 - r^2 \right\} \tag{1}$$

と与える.このとき,以下の設問に答えよ.

(

(7) 式(1)で与えられる速度分布を用いて管摩擦係数 λ を求めよ. ただし, 水の粘度を μ とせよ.

次に、管摩擦係数 λを一定値とみなすことができる場合を考える.

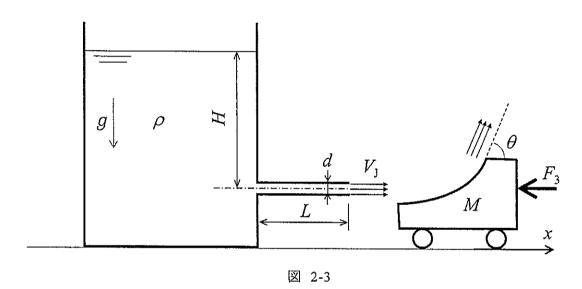
(8) いま, ζ =0.5, λ =0.02とし,L=2.5m,d=0.05mの場合を考える.このとき物体を静止させるためには,F=F2の力が必要であった.設問(3)で求めたF4に対して, $\frac{F_2}{F_1}$ の比を求めよ.

以下の設問では、円管の出口流速 V_J を用いて答えよ、また、噴流が物体にあたる際に、噴流自身の運動量の時間変化については考えなくてよい。

(9) 力Fにより物体が静止した状態から、ある時刻(t=0)で力Fを 0 にした後の物体の速度 v(t)の時間変化を求めよ.

最後に、物体形状を変え、図 2-3 に示す形にした。このとき、物体に加える力を F_3 にしたところ、物体は右側に動いた。

(10) 十分時間が経った後の物体の速度を求めよ、ただし、噴流は物体に流入するときの速さのまま角度 θ の方向に流出するとし、噴流に働く重力の影響は無視してよい。



(

Problem 1

Answer both of following Questions I and II. Use one answer sheet for Question I and use another sheet for Question II.

- I. Answer the following questions. Here, pressure, specific volume, specific heat ratio, Planck constant, speed of light, and Boltzmann constant are represented by P, v, κ , h, c, and k_B , respectively.
 - (1) Internal combustion engines are represented by various theoretical cycles. Select all theoretically impossible cycles in Figure 1-1. And explain the reason why they are impossible.

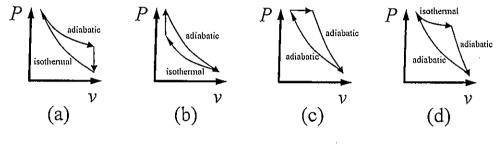


Figure 1-1

- (2) Consider an isentropic process of a mixture gas of helium and hydrogen with a molar ratio 2:3. Obtain the relation, $Pv^{\kappa} = \text{constant}$, where $\kappa = 31/21$. Here, the mixture gas is assumed to be an ideal gas.
- (3) Derive the theoretical thermal efficiency of an Otto cycle (a cycle consists of isentropic compression, heat addition at constant volume, isentropic expansion, and removal of heat at constant volume) as a function of the pressure ratio ε and the specific heat ratio κ . Explain that the theoretical thermal efficiency decreases with decrease in the specific heat ratio.
- (4) Planck's law of thermal radiation can be obtained by considering the population of electromagnetic waves (photons) in an unit volume. Energy of photons is quantized and takes values of 0, $h\nu$, $2h\nu$, $3h\nu$,... for the frequency ν . For the system with absolute temperature T, the number of photons with energy E_i is proportional to e^{-E_i/k_BT}

(Boltzmann distribution). Derive the average energy E of this system. Within a space of unit volume, the number of modes of electromagnetic waves with frequencies between ν and ν + d ν is expressed as $N_{\nu \sim \nu + d\nu} = \frac{8\pi \nu^2}{c^3} d\nu$. Obtain the energy $D_{\nu \sim \nu + d\nu}$ of electromagnetic waves with frequencies between ν and ν + d ν . Finally, by converting the frequency ν to the wavelength λ , obtain the energy $D_{\lambda \sim \lambda + d\lambda}$ of electromagnetic waves with wavelengths between λ and λ + d λ .

II. As shown in Figure 1-2, cooling water with a density of ρ and specific heat of C_P is flowing at a cross-sectional average velocity of U_0 inside a cooling pipe with an inner diameter of D, a thickness of t, and a total length of L, made of copper with thermal conductivity of λ_c . The velocity and temperature profiles inside the pipe are fully developed. Outside the cooling pipe, high-temperature air of a free-stream temperature of T_∞ is flowing at a free-stream velocity of U_∞ in a direction perpendicular to the cooling pipe. Let the mixed-mean temperatures of the cooling water be T_0 at the inlet and T_1 at the outlet of the cooling pipe, respectively. The temperatures on the inner and outer surfaces of the cooling pipe are uniform and are respectively, T_w and T_a . The heat-transfer coefficients at the inner and outer surfaces are also uniform and are respectively, h_w and h_a . Neglect effects of radiation and gravity. Answer each of the following questions.

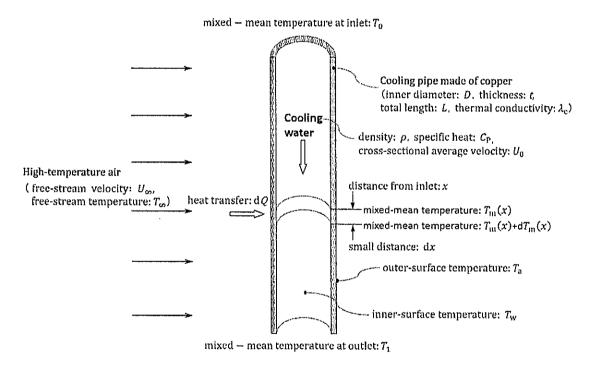


Figure 1-2

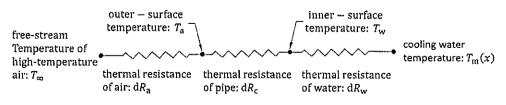


Figure 1-3

- (1) Let the mixed-mean temperature of the cooling water be $T_{\rm m}(x)$ at a cross section located by a distance x downstream of the inlet of the cooling pipe. Consider amount of heat dQ transferred per unit time between x and (x+dx) where dx denotes a short distance. Express dQ by three independent equations by using differences in the temperatures, heat transfer coefficients, thermal conductivity, and other quantities defined in the problem statement. We model the heat transfer based on a thermal network model as shown in Figure 1-3. Find thermal resistance of the external air dR_a , that of the cooling pipe dR_c , and that of the internal water dR_w . Since the thickness t of the pipe is much smaller than the inner diameter D, the temperature profile between the inner and outer surfaces of the pipe can be approximated as a linear function of the radius and the area of the outer surface can be regarded the same as that of the inner surface.
- (2) Let the mixed-mean temperatures of the cooling water be $T_{\rm m}(x)$ at the cross section at x and $(T_{\rm m}(x) + {\rm d}T_{\rm m}(x))$ at the cross section at $(x + {\rm d}x)$. Take a control volume encompassed by these two cross sections and the inner surface of the cooling pipe, and consider balance of heat transfer for this control volume. Find the amount of internal energy conveyed per unit time by the cooling water through the cross section at x. Likewise, find the amount of internal energy conveyed per unit time by the cooling water through the cross section at $(x + {\rm d}x)$. Finally, derive an equation that shows a balance of heat transfer for this control volume.
- (3) Integrate the equation that you found in Question (2) from the inlet through the outlet of the cooling pipe, and find the mixed-mean temperature T₁ of the cooling water at the outlet of the cooling pipe as a function of the mixed-mean temperature T₀ at the inlet of the cooling pipe, density ρ and specific heat C_P and cross-sectional average velocity U₀ of the cooling water, temperature T_w and heat-transfer coefficient h_w at the inner surface of the cooling pipe, inner diameter of D, and total length of L. By using this result, find the total amount of heat Q that is transferred per unit time from the high-temperature air to the cooling water.

(4) Let the inner diameter D, thickness t, and total length L of the cooling pipe be respectively, 20 mm, 2 mm, and 1.0 m. Let the mixedmean temperature T_0 at the inlet and cross-sectional average velocity U_0 of the cooling water be respectively, 20 °C and 1.0 m/s. Let the free-stream temperature T_{∞} and velocity U_{∞} of the high-temperature air be respectively, 80 °C and 10 m/s. Under these conditions, the Nusselt number Nuw at the inner surface of the cooling pipe is proportional to the 0.8th power of the cross-sectional average velocity U_0 and takes a value of 140. The Nusselt number Nu_a at the outer surface of the cooling pipe is proportional to the 0.6th power of the free-stream velocity U_{∞} of the high-temperature air and takes a value of 60. These Nusselt numbers are based on the inner diameter D of the cooling pipe. Under these conditions, among the three thermal resistances that you found in Question (1), which one becomes the most dominant? Describe how the total amount of heat Q that is transferred per unit time from the high-temperature air to the cooling water changes according to the change in the cross-sectional average velocity U_0 of the cooling water and the free-stream velocity U_{∞} of the high-temperature air. Use the values listed in Table 1-1 for approximate thermal properties if they are needed.

Table1-1

	Density (kg/m³)	Specific heat (J/kgK)	Thermal conductivity (W/mK)	Kinematic viscosity (m ² /s)
Cooling pipe	9.0×10 ³	4.0×10 ²	4.0×10 ²	-
Cooling water	1.0×10 ³	4.0×10 ³	0.6	1.0×10 ⁻⁶
High- temperature air	1.2	1.0×10 ³	0.03	2.0×10 ⁻⁵

(5) By using the results that you obtained in Question (4), simplify the overall thermal resistance and express the amount of heat Q that is transferred per unit time from the high-temperature air to the cooling water by using what are needed among the following parameters: the mixed-mean temperature T_0 at the inlet of the cooling pipe, density ρ , specific heat C_P , and cross-sectional average velocity U_0 of the cooling water, free-stream velocity U_∞ and temperature T_∞ of the

high-temperature air, heat-transfer coefficients $h_{\rm w}$ and $h_{\rm a}$ at the inner and outer surfaces, thermal conductivity of $\lambda_{\rm c}$, inner diameter of D, thickness of t, total length of L of the cooling pipe.

Problem 2

As shown in Figure 2-1, a circular pipe with an inner diameter d and a length L is attached to a container filled with water at a distance H from the water surface. The diameter d is sufficiently small compared to H and L. An object with mass M is placed at the exit of the circular pipe. The object has wheels so that it can move without friction. The density of water is ρ , and gravity acceleration is g. Answer the following questions.

(1) Find the minimum force F_0 that should be applied to the object in order to prevent water from flowing out of the circular pipe.

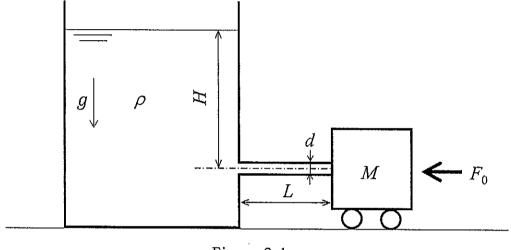


Figure 2-1

Next, as shown in Figure 2-2, the object is at rest sufficiently far from the exit of the circular pipe and the force F is imposed on the object. A jet is flowing out of the circular pipe with the velocity V_J . The jet flows toward the object with mass M from the exit of the circular pipe, and the dimeter d of the jet is kept constant. It has no vertical component of the velocity due to gravity and keeps its horizontal position. The velocity profile in the cross-section of the jet can be assumed uniform. The height H of the water in the tank does not change.

Let us consider the cases without loss.

- (2) Find the velocity V_I at the exit of the circular pipe.
- (3) The force $F=F_1$ is imposed on the object from the right so that the object is at rest. Find the force F_1 .

- (4) Find the maximum gauge pressure P_{max} on the surface of the object.
- (5) We change the force F from F_1 necessary for the object to be at rest to the force F_0 found in Question (1). Let the right direction (x-direction) be positive. Find the velocity of the object after a sufficiently long time.

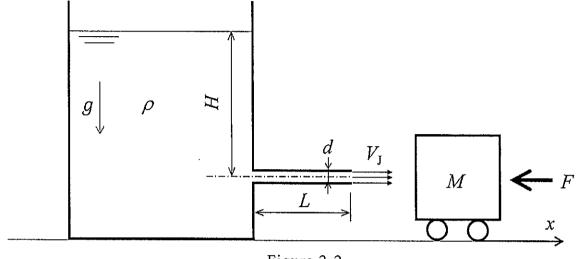


Figure 2-2

Next, let us consider the pipe flow as shown in Fig. 2-2. But, this time we consider the pipe flow with entrance loss and friction loss. The entrance loss coefficient of the junction between the container and the pipe is ζ , and the friction factor of the pipe is λ . Here, λ is defined as follows, using the averaged velocity \overline{u} in the cross section and the pressure difference ΔP between both ends of the pipe:

$$\frac{\Delta P}{\rho} = \lambda \frac{L}{d} \frac{\overline{u}^2}{2}.$$

If the velocity in the circular pipe is sufficiently low, the flow becomes laminar. Now, let us consider the fully developed laminar flow and the velocity profile of the circular pipe is given using a constant α , the pipe inner diameter d, and the distance from the center of circular pipe r as follows:

$$u = \alpha \left\{ \left(\frac{d}{2} \right)^2 - r^2 \right\}. \tag{1}$$

Answer the following questions.

(

- (6) Find the averaged velocity in the cross section, \overline{u} .
- (7) Find the friction factor λ_0 using the velocity profile of Equation (1). Let the viscosity of the water be μ .

Next, consider the case where the friction factor λ is assumed to be constant.

(8) Let us assume $\zeta = 0.5$, $\lambda = 0.02$, L = 2.5 m, and d = 0.05 m. In order to make the object at rest, the force $F = F_2$ is required. Find the ratio $\frac{F_2}{F_1}$, where F_1 is the one found in Question (3).

Hereafter, answer the following questions by using V_J of the velocity at the exit of the circular pipe. In addition, the temporal change in the momentum of the jet is not necessary to be considered.

(9) Find the velocity v(t) of the object as a function of time after the force F is changed to zero at t = 0 from the force required for the object to be at rest.

(

Finally, the shape of the object is changed as illustrated in Figure 2-3. The object at rest begins to move to the right when the force imposed on the object becomes F_3 .

(10) Find the velocity of the object after a sufficiently long time. Here, we consider the case that the jet flows out of the object with the angle θ at the same speed as the one flowing in, and the effect of gravity upon the jet is negligible.

