YRR 2 8 G EEHR T ST

KR (L SRR A S2SAER AR
MR T (551 %)

ﬁ%a%:$m27¢9ﬁlﬁ(k) 9:00~11:00"

R

G W

e
= O

. BREBOARIS DX T, ZOREMFEEIRNT L.

. BEIHEE L LRME2 ETHE. 2BIcEETs D L.

- BEOET, &T, 2V IXERIRERREIS b ITE LHE - 2.

. BERETAKEREND. MBEPERL, BRERDNITHLHS - L.

MBI LI 2ROEAERABERCTEEST 2. BE 1, DIk TR,
RETEK I ROEREAEEFVTRETSZ L. BEPEETES S RVE,
HElboTh L. 223, %ﬂf%ﬁ@’ﬂ?‘éxﬂ—xﬁﬂ"/@'ﬁ‘é%/—\‘iﬂ%ﬂ?n‘&
#EZBZDTHLEHAZ L.

. BRAMOBESNEERE, BR0ZRES, TOXERAETRET A EERSS
MATEZ L. BALNOBHTEIENRNI ERH5. 2B, BELMICIE 1
MIE (FL1E)) LRATHI L, ERABOAEBICHD [ of | 2oV,
ERABEZENLRNESREROEETIY. B LUERAGEZENLEEAE, B
BT OWRBETRT S, _

. R BRORORERH SR TALEERIIEN LR e Rb 5.

. BRABIE, BERTERPESLED, £ TEERTE 2.

TEZRAEL 2HENESNS. ELEBS0SREELTIATEE L.

TEERKE, FRLEhosbEw, 2&@%%%&?5 &,

FREMFIZE LR T L.

© 0 =




FY2016 Department of Mechanical Engineering |

Master Course Program Entrance Examination
“Mechanical Engineeririg” (Part 1)

2015/9/1(Tuesday) 9 :00~11:00

Instructions

Do not open the exam booklet until you are instructed to begin.

Answer all Questions in Problems 1 and 2.

If you find some incomplete printing or collating, report them to the proctor.

Make sure that you have all 4 answer sheets. Let the proctor know otherwise.

Use 2 answer sheets for each Problem. If there are Questions I and II in a Problem,

( use one answer sheet for one Question. If the space on the front side of the answer

(' sheet is not enough, you may also use the backside. If the space is still not enough,

] ask the proctor for an additional answer sheet.

6. On each answer sheet, write your candidate number and the Problem number in
the designated boxes. If you fail to do so, the answer sheet may not be graded.
Write “Mechanical Engineering (Part 1)” in “Subject”. Leave “( /of )’ blank unless
you use an additional answer sheet for the Problem.

7. Answer sheets with symbols and signs that are not related the answers may be
judged invalid.

8. Hand in all the answer sheets even if you have not used them.

9. You are provided with 2 worksheets. Write your registration number on the upper

 left corner of each worksheet.

10. Hand in both worksheets even if you have not used them.

11. You may take home the exam booklet.
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Problem 1

Answer both of the following Questions I and II. Use one answer sheet for Question I

and use another sheet for Question II.

I. Consider a gas-turbine cycle consisting of the following four processes:

Process 1 (State 1 State 2): Isentropic compression,

—

Process 2 (State 2 —> State 3): Isobaric heating,

Process 3 (State 3 .— State 4): Isentropic expansion,
—_

Process 4 (State 4 State 1): Isobaric cooling.

The working fluid is assumed as an ideal gas with a specific heat at constant
pressure, ¢p (constant). The specific heat ratio, the pressure ratio, and the maximum
temperature ratio are represented by x, ¢, and 7, respectively. Also, the temperature,
the pressure, the specific entropy, the specific volume, and the gas constant are
represented by T, p, 5, v, and R, respectively. The temperatures for States 1 - 4 are

respectively denoted as Ty (i = 1, 2, 3, 4). Answer the following questions.

(1) [Iflustrate the 7-s and p-v diagrams of this cycle. Indicate each State number

in the illustrations.

(2) Derive the amount of work done by the compressor in Process 1 (State 1 -
State 2). Express the answer with x, R, T1, and ¢ Also, under the same
pressure ratio, consider an isothermal process from State 1. After this process,
State 2* is( obtained, Derive the amount of work done by the compressor
during this process (State 1 — State 2*). Express the answer with R, T, and 4.
Then, compare the amounts of work in these two processes and explain which

is larger.

(3) Derive the amount of the entropy change per unit mass in Process 2 (State 2

~ — State 3). Express the answer with «, R, ¢, and 7.

(4) Derive the theoretical thermal efficiency of this cycle. Express the answer

using only x and ¢.

Next, consider a regenerative gas-turbine cycle as shown in Figure 1-1. For energy

recovery from the hot exhaust gas, a heat exchanger (recuperator) is additionaily

As



equipped in between the compressor and the combustor. Here the inlet temperatures
of the hot and cold gases correspond to T4 and T3, respectively. The counter-flow
arraﬁgement is assumed for the heat-exchanger passages, and the heat is exchanged
through separating walls with negligible heat resistance. The mass flow rates of the
hot and cold gases are assumed to be identical and constant at . Thus the heat
capacity rate C for the hot and cold gases is the same as C=ric,. The outlet
temperatures of the hot and cold gases are denoted by Ty (< Tq) and Ty (> T2),

respectively. The temperature efficiency of this heat exchanger; &, is defined as: -
Ty =Ty
e=A4" "4
T4 *“Tz

Answer the following questions.

(53) Derive the amount of the entropy generation in the heat-exchange process.
Express the answer with C, T4, T2, Ty, and Ty, Also, obtain. the temperature
efficiency ¢ for the maximum and minimum entropy generation, respectively.
Note that, as shown in Figure 1-2, the temperature distributions for the hot and
cold gases follow the straight-line profiles that are parallel to each other in the

coordinate along the flow (opposite direction for the hot and cold gases).

(6) Derive the theoretical thermal efficiency of this regenerative cycle when

g=1. Express the answer using only «, ¢, and 7.

Heat Exchanger '

Generator

Compressor Turbine

Figure 1-1

104,



Figure 1-2
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II. Consider a process of ‘boiling an egg’ as an unsteady heat conduction problem.
Ignoring the phase change and the protein thermal denaturation processes, we assume
that an egg is a solid sphere of uniform material with radius R = 3 em. We assume
that density p = 1000 kg/m?3, specific heat at constant pressure ¢, = 4 kJ/kgK, and
thermal conductivity A= 0.6 W/mK are constant irrespective of temperature. At time
t = 0, a sphere with an initial temperature 7o = 20 ‘C submerges to boiling water
(temperature Tw= 100 °C). Consider the temperature change of the sphere assuming
the heat transfer coefficient 2 = 200 W/m2K.

First, consider the lumped capacitance model, i.e., assuming that temperature of the
( ' whole sphere is uniform.,
' (1) Describe the differential equation and boundary conditions for the

temperature T of the sphere.

(2) Obtain the temporal change' of temperature of the sphere by solving the
equation in Question (1).

(3) Draw a schematic graph of the temperature change in Question (2). By

reading from the graph, estimate the approximate time when the temperature of
the sphere becomes 50 C. '

Next, consider the temperature distribution inside the sphere. This is a one-
(( ~ dimensional unsteady heat conduction problem of a sphere of radius R with the initial

uniform temperature To heated in the boiling water.

(4) Describe the one-dimensional unsteady heat conduction equation in spherical

coordinates and boundary conditions.

(5) Obtain the non-dimensional form of the equation and boundary conditions in

Question (4). Concisely explain the defined non-dimensional numbers.

(6) By using the Heisler diagram for a sphere in Figure 1-3, obtain the

approximate time when the center temperature Tc of the sphere becomes 50 “C.

1%8



Here, 6;= L-1,

is the non-dimensional center temperature, o is thermal
[

diffusivity, and Bi is Biot number.

(7) Explain the reason of the large discrepancy in results of Question (3) and
Question (6).

N : =t _Bi= 0,01 3
==
0.8 “-\:‘ S —— = 0.05 =
0 . 7 u“\ “‘ ‘\‘\ \\\ \\\“
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Figure 1-3
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Problem 2

Answer both of the following Questions I and II. Use one answer sheet for
Questi'on I and use another sheet for Question II.

I. Consider the force acting on a sphere in a uniform flow. Answer
mathematical expressions which are suitable in ()} in the following text,
using the V (Nabla symbol), etc. Not only the answers, but also the
derivations of the solutions need to be shown, if there are the manipulations
of mathematical expressions. And, assume that the flow is in the steady
state and the effect of gravity can be neglected.

First, consider the fluid without viscosity. Let # be the velocity vector
of the flow field. For an incompressible flow, the equation of continuity
which represents conservation of mass is expressed as ( @ ). The
vorticity is expressed as ( ® ) using u. A flow without vorticity is
called potential flow. Using a scalar potential g, the velocity field is
expressed as ( @ ). Hence, the potential flow under an incompressible
condition yields { @ ).

Consider a sphere of diameter d in the uniform flow with the fluid
velocity of U. The fluid density is p. The flow is assumed to be an
incompressible and inviscid potential flow. Then, using the spherical
coordinate (r,8,4) with its axis in‘ the flow direction, the velocity

distribution along the sphere surface is given as u, =-=Usiné. Using this

velocity distribution and denoting the pressure at infinity as p,, the
pressute distribution on the sphere surface is given as ( ® ). Using this
pressure distribution, the drag force D acting on the sphere is given as
D= ® ). |

Next, consider the case that viscosity is dominant. Consider the
Newtonian fluid as a viscous fluid. Denoting the velocity field as » and
the pressure as p and assuming the steady state, the equation of motion for
the Newtonian fluid with the density of p and the viscosity of x4 is given as
( @ ). Consider the nondimensionalization of the equation using the
characteristic length d and the characteristic velocity U. Since we consider
the dimensionless equation dominated by the viscosity, the pressure is
nondimensionalized as ' '

s



(* represents the dimensionless quantity) .

Using the dimensionless velocity z°, the dimensionless pressurep’, the

spatial derivative V" differentiated by dimensionless leﬁgth, and Reynolds
number Re= ( ), Bq. @ is expressed as ( @ ). For a flow
dominated only by the viscosity, taking the limit of Reynolds number being
0, Eq. @ becomes ( @ ). The flow described by this equation is called
Stokes flow.
Related to Stokes flows, consider the force acting on a sphere of
diameter 4 in a uniform flow of velocity U. Solving a set of the continuity
and the momentum conservation equations,. the velocity distributions

around a sphere in a uniform flow are obtained as

3
u,.=(1—3—91-+ d 3)(]0056 ) (A)
4r 16r
3d d° :
u9=—[1—-8—;—32r3]U31n9. ‘ (B)

And, denoting the pressure at infinity as p,, the pressure distribution is
given as A
P =P —%—?cos@
Using these expressions, consider obtaining the drag force acting on the
sphere. Unlike the case of an inviscid flow, there are two contributions to
the drag force, i.e., one from the pressure distribution D, and the other from
“the viscous stress distribution D, From the pressure distribution, we obtain
Dp,=( @ ). Next, to calculate Dy, we need to calculate the viscous stress
acting on a sphere surface. The viscous stress has the components of r,,
which is the component normal to the sphere surface, and 7,, and 7,4
which are components tangential to the surface. Using (A) and (B), 7,, and
7, are obtained as 7,,=( @ ), r,,=( ® ). Since the flow ficld is
axisymmetric, 7,4 =0. Usin.g these expressions and integrating the viscous
stress over the sphere surface, the drag force component is obtained as
Duy=( @ ). Then, we can obtain the drag force by adding the D, and D,.
The drag coefficient C, is given by the nondimensionalization of drag

15
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. D
CD =3
lpU"ﬁi
2 4

Using the Reynolds number given by Re= , Cp,=( @ )isobtained.
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II. Consider a centrifugal pump as illustrated in Figure 2-1. Water with the
density p flows into the centrifugal pump throﬁgh the nozzle. A
manometer is connected to the nozzle at the cross sections O and @,
and mercury with the density pu is used for the manometer. The area, the
velocity, and the pressure at the cross sections @ and @ are denoted
by A, u and P, respectively, and the subscripts 1 and 2 denote the
variables at the cross sections (D and @ ,respectively. Here we
assume 4, > 4,. In addition, gravitational acceleration is denoted by g.
Then, water from the nozzle flows into the impeller attached to the
rotating shaft in the centrifugal pump. The inner and outer radii of the
blades of the impeller are » and R, respectively, and their height is 4. The
impeller is rotating around the point O with the torque 7, and it is
assumed that it rotates at the constant torque regardless of the flow rate.
A swirling component of the inflow to the centrifugal pump is negligible,
and the effect of gravity in the centrifugal pump is negligible. Answer the
following questions.

(1) When water is flowing, answer which liquid level of the manometer
at the cross section O or @ becomes higher.

(2) Obtain the flow rate O when the height difference in liquid levels
between the cross sections O and @ becomes AH.

(3) Obtain the angular velocity of the impeller @ using the flow rate Q.
(4) Calculate how many times larger the angular velocity of the
impeller becomes comparing to the angular velocity obtained in

Question (3) when the height difference in Ii\quid levels between the
cross sections @ and @ changes to 2AH.

A



Figure 2-1

Then, the angle of the blade tip is set to be a (0°<a <.90°) as illustrated in

Figure 2-2. The impeller is rotating in the clockwise direction at the constant
torque 7.

(5) Obtain the power Py to rotate the impeller.

(6) The power Py obtained in Question (5) becomes minimum at a
certain flow rate. Obtain the height difference in liquid levels of the
manometer between the cross sections @ and @ at the minimum
Py '

Impeller O.

Figure 2-2
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